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Abstract

In the present paper, we define a certain suitable classes of admissible functions in the open unit disk associated
with fractional derivative and differential operator. We derive some third-order subordination and superordination
results for these classes. These results are applied to obtain third-order differential sandwich results. In addition,
we indicate certain special cases and consequences for our results.

1. Introduction

Indicate by H (U) the collection of analytic functions in the open unit disk U = {z € C : |z| < 1}. For
a € Cand n € N, let H[a, n] be the subclass of 7 (U) consisting of functions of the form:

f(2)=a+ayz"+ap 2"+, a€C.

Also, let 7y = H[0,1] and H; = [1,1]. Let f, g € H (U). The function f is said to be subordinate to g, or g is
said to be superordinate to f, if there exists a Schwarz function w analytic in U with w(0) = 0 and |w(2)| <
1 (z € U) such that f(z) = g(w(2)). This subordination is denoted by f < g or f(z) < g(z)(z € U). It is well
known that, if the function g is univalent in U, then f < g if and only if f(0) = g(0) and f(U) < g(U) (see
[18]).

Let A be the subclass of H (U) consisting of functions of the form:

f(2) =Z+Zanz” . (1.1)
n=2

Significant and interesting problems in the geometric function theory are studied using third-order
differential subordination and superordination for functions, which are analytic in the unit disk. In 1935,

Goluzin [10] considered the simple first-order differential subordination zp(z) < h(z) and showed that if h is
convex, then p(z) < q(2) = fOZ h(t) t~1dt, and this q is the best dominant. In 1970, Suffridge [24] improved
the Goluzin‘s result. In 1947, Robinson [21] considered the differential subordination p(z) + zp(z) < h(z) and
showed that if h and q(z) = z71 fOZ h(z) dt are univalent, then q is the best dominant, at least for |z| < 1/5. In
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1975, Hallenbeck and Rusheweyh [11] considered the differential subordination:

zp(z)

p(z) + <h(z) (y #0,Rey =0)

and proved that if h is convex, then p(2) < q(z) = yzY |, OZ h(t) t¥~1dt, and this is the best dominant.

The theory of differential subordination in C is the complex analogue of differential inequality in R. This
theory of differential subordination was initiated by the works of Miller and Mocanu in 1981 [16], which was
developed in other studies in 1987 [15] and 1989 [19]. Many significant works on differential subordination
were pioneered by Miller and Mocanu, and their monograph (2000) [18] compiled their considerable efforts in
introducing and developing the same. In 2003, Miller and Mocanu [17] investigated the dual problem of
differential superordination, whereas Bulboaca (2005) [6] investigated both subordination and superordination.
The theory of first and second order differential subordination and superordination has been used by numerous
authors to solve problems in this field (see [1,2,4,8,14,28]). By contrast, few articles mentioned third-order
inequalities and subordination. The first authors investigated the third order, and Ponnusamy et al. [19]
published in 1992. In 2011, Antonino and Miller [3] extended the theory of second order differential
subordination in the open unit disk U introduced by Miller Mocanu [18] to the third order case. They
determined the properties of p functions that satisfy the following third-order differential subordination:
{W(p(2),zp'(2),z%p" (2),23p""(2); z):z € U} € Q.1n 2013, Jeyaraman et al. [13] also applied the third-order
subordination result on the Schwarzian derivative. In 2014, Tang et al. [26] introduced the concept of the third-
order differential superordination, which is a generalization of the second-order differential superordination.
They determined the properties of function that satisfy the following third-order differential superordination:

Qc{W@2),z0(2),z°p" (2),23p"" (2);2) : z € U}.

They also obtained the differential subordination and the corresponding differential superordination
implications for meromorphically multivalent functions, which are defined by convolution operators involving
the Liu-Srivastava operator by determining certain classes of admissible functions. In 2014, Tang et al. [25]
investigated some third-order differential subordination result for analytic functions involving the generalized
Bessel functions, in 2014, Tang et al. [27] studied the differential superordination based on analytic functions
involving the generalized Bessel functions. In 2014, Farzana et al. [9] discussed some third-order differential
subordination results for analytic functions which are associated with the fractional derivative operator.

This study used the methods of the third-order differential subordination and superordination results of
Antonino and Miller [3] and Tang et al. [26], respectively. Certain suitable classes of admissible functions are
considered in this study, and some applications of the third-order differential subordination and superordination
of analytic functions associated with fractional derivative and differential operator. Several interesting examples
are also discussed.

Definition 1.1 [20]. For f € A the operator I;’;ﬁ{z ¢, 1s defined by I;’lr;lz pqgt A=A

Ifﬁz,g,df (2) =M1 2,042 *R1f(2), z€U,
where

My a2 =z + Z [ (1+ G +2)(n - 1)) .
n=2 (1+2,(n—-1)+d

and R" f(z) denotes the Ruscheweyh derivative operator [22] given by
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R1f@) =2+ ) COpmans",
n=2

where C(,n) = (™771),n,m e Ng =N U0}, 2, >4, >0,£>0and £+d > 0.

If f is given by (1.1), then we easily find that

[ee) m
L1+ (A +A,)(n—-1))+d n+n-—1
Ig;;ﬂdf(z)zﬂz[( (1 +2,)(n — 1)) ] ("7 an (1.2)
et a (14 2,(n-1)+d n
n=2
Definition 1.2 [23]. The fractional derivative of order 6, (0 < § < 1) of a function f is defined by

5 _ 1 dar f@
sz(z) = F—(l — o) dz . —(Z— t)5 dt,

where the function f is analytic in a simply-connected region of the z-plane containing the origin and the

multiplicity of (z — t)~% is removed by requiring log(z — t) to be real, when Re(z — t) > 0.

From Definition 1.1 and Definition 1.2, we have

1
snm — -6
DZ I/h./lz.f,df(z) - 1"(2 _ 6) Zl

s nl'(n +n) L1+ A+ ) —1) +d]"
nzzr(n —§+DIrm+1| (1+2,0-1))+d

a,z" 9. (1.3)
It follows from (1.3) that

e,z (DI of @) = [6(1+ 2o (n = D) + d]DIT )
~[£A+ 2(n— 1) — (1 = &A) +dIDIT , f(2). (1.4)

Definition 1.3 [3]. Let ¥ : C* X U — C. And the function h(z) be univalent in U. If the function p(z) is
analytic in U and satisfies the following third-order differential subordination:
Y(p(2),2p'(2),2%p" (2),2°p"" (2); 2) < h(2), (1.5)

then p(z) is called a solution of the differential subordination. The univalent function q(z) is called a dominant
of the solutions of the differential subordination, or more simply a dominant if p(z) < q(z) for all p(z)

satisfying (5). A dominant §(z) that satisfies G(z) < q(z) for all dominants q of (1.5) is said to be the best
dominant.

Definition 1.4 [3]. Let Q denote the set functions q that are analytic and univalent on the set U \ E(q),
where

E(q) = {f 1€ aU:lir%q(z) = 00} ,
Z>
and is such that min|q'(¢)| = p > 0 for ¢ € AU\E(q).
Further, let the subclass of Q for which g(0) = a be denoted by Q(a), Q(0) = Q, and Q(1) = Q,.

The subordination methodology is applied to an appropriate class of admissible functions. The following
class of admissible functions was given by Antonino and Miller [3].
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Definition 1.5 [3]. Let  be a set in C and q € Q and n € N \ {1}. The family of admissible functions

¥ [Q, q] consists of those functions ¥ : C* x U — C achieving the following admissibility condition:

d(r,s, t,u;z) € Q,

whenever

— —p t §q" ()
r=q(§), s=k§q'(§) and Re{s+1}2kRe{ e +1},

and

u £29" ()
Re {;} = sze {W};

where z € U,é € QU\E(q) and k = n.

The next theorem is the foundation result in the theory of third-order differential subordination.

Theorem 1.1 [3]. Let p € H[a,n] withn = 2, and q € Q(a) achieving the following conditions:

£4"(6) 20 ()
Re{ G) } 20, and 7T

where z € U,§ € JU\E(q), andk = n.If Qisasetin C,yp € ¥ [Q,q] and

— 1

Y(p(2),2p'(2), 2%p" (2),2°p""(2);2) € Q,
then
p(z) <q(z)  (zeU).
Definition 1.6 [26]. Let 1 : C* X U — C and the function h(z) be analytic in U. If the function p(z) and

Y(p(2),2p'(2),z%p" (2),2°p"" (2); 2)
are univalent in U and satisfy the following third-order differential superordination:
h(z) < Y(p(2),2p'(2),2°p" (2),2°p"" (2); 2), (1.6)

then p(z) is called a solution of the differential superordination. An analytic function q(z) is called a
subordinant of the solution of the differential superordination, or more simply a subordinant, if q(z) < p(z) for
all p(z) satisfy (1.6). A univalent subordinant §(z) that satisfies the condition q(z) < §(z) for all subordinant
q(z) of (1.6) is said to be the best subordinant.

Definition 1.7 [26]. Let Q be a setin C and q € H[a, n] with q'(z) # 0. The family of admissible functions
‘I’; [Q, q] consists of those functions ¥ : C* X U — C that satisfy the following admissibility condition:

o(r,s, t,u; &) € Q,
whenever

zq'(2)
m

t 1
= = — < —
r=q(z), s and Re {s + 1} = Re{

u 1 z2q""(z)
Re (;) < WRG <W>;

24" (2)
7@ 1}’

where z € U,§ € dU, and m=n = 2.
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Theorem 1.2 [9]. Let q € H[a,n] and € ¥ [0, q]. If

Y(p(2),2p'(2),2%p" (2), 2°p"" (2); 2)

is univalent in U and p € Q(a) satisfy the following condition:

Re <%> =0 and

wherez € U,§ € U, and m = n = 2, then

Q< {Y(p(2),2p"(2), 2°p" (2),2%p"" (2); 2): z € U}

zp'(2)

m <m, (1.7)

implies that
q(z) <p(2) (z € U).

2. Subordination Results

In this section, the following class of admissible functions is defined, which is required to prove the main

third-order differential subordination theorem for the operator DS I ;1717:{2 f(2) defined by (1.3).

Definition 2.1. Let ) be a set in C and g € Qo N Hj. The class of admissible functions ® [Q, q] consists of

those functions ¢ : C* X U — C that satisfy the admissibility condition: ¢(u, v, w, y; z) & €, whenever

fm o, v 2 PRI O+ Ao = 1) = (1 = )1 + dla(®)
- A% v= [e(1+ 4,(n— D) +d] ’

(1 + A,(n— 1) +d]” = [6A + A,(n— 1) — (1 — 5)A,) + d]?v
A wle(1+2,(n— 1)) +d] - [A + 2,(n—1) — (1 = 6)A4) +dJv

§q"(§) N 1},

—2[t(1 4+ 2,(n—1) — (1= 8)A) + d]) >k Re{ 700

(e + 20— D) + d’ = [6(1 + 2,(n— 1) — (1 = §)A,) + dv
222 w[e(1+ 2, (n— D) +d] - [£(L + A,(n— 1) — (1 = )Ay) + d]v
x[(1+ (= 1) +d]” = [6(1 + A, (n — 1) — (1 — 8)A) + d]?v
A W[+, —-D)+d] - [A+ 2, —1) — (1 —8)A) +dv

(204 + (B +3[£(1 + (0= 1) = (1 = OA) +d])
o

—2[6(1 + Ay(n—1) — (1 — &)Ay) +d] - 1}

— — — 2 011
—3[6(1+ A (n—1) — (1 — &)A) +d] (”l FHAF L0 -1 ==+ d]> - 1) > k?Re (f 1 (E)>,

#2172 q'®

where z € U, £ € OU\E(q) and k = 2.

Theorem 2.1. Let ¢ € @ [Q,q]. If f € A and q € Q, satisfy the following conditions:

£q"(£) DI (2)
Re< ) ) >0, oo =k (2.1)
and
{0 (D211 F(2,DELM (), DI £ (2), DL F(2);2): 2 € U, 2.2)
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then
D" f(2) < q(2), (z€U).
Proof. Define the function p(z) in U by
p(2) = DI £(2). (2.3)

From equations (1.4) and (2.3), we have

LAzp@) + [P(1+2,(n—1) — (1 —6)Ay) +dlp(2)

DM (2) = 2.4
2, 1) [((1+ (- 1) +d] 24

Further computations show that

020,222p" (2) + P4 (P2 + 2[8(L + A,(n — 1) — (1 = )A) + dDzp’ (2) +
L1+A,(n—-1)— A —-6)A) +d]“zp(z
D5I;717;l:'2f(z) — [ 2 1 : ] p( ) (25)
[¢(1+2,(n — 1)) +d]
and
032,323 (2) + 320,20 + [E(1 + A, (n — 1) — (1 — &)A,) + dDz2p" (2) +
{81 (2227 +3[6(1 + 2,(n— 1) — (1 = O)Ay) +d]) (A + [£(1 + L (n — 1) — (1 — §)A) + d]D)}zp'(2)

D,glr] m+3f(Z) _ LA+ 2,(n-1) - (1 -68)1) + dJ? p(2) . (26)

[6(1+ A, — D) +d]°
Define the transformation C* to C by

s+ [£(1+ ,(n—1) — (1 —8)Ay) +d]r
[£(1 4+ 2,(n— 1)) +d]

v(r,s, t,u) =r, w(r,s, t,u) =

)

P22t 4+ 00, (8 + 2[f (1 + A4,(n—1) — (1 = &)A,) + d])s +

2,5, 60) = [(1 + Ay(n— 1) — (1 — &)A,) + d]?r , 27

[6(1+ 2,(n— 1)) +d]

and

P25 + 3020, + [FA+ ,(n—1) — (1 = &)A) +d]t
+{ (227 + 3061+ 4, (n— 1) = (A1 =) +d]) (A + [(1 + 2, (n— 1) = (1 — A +dD)}s
+[(1+ A, —1)— (A =5A) +dPr
[6(1+ 2,(n— 1) +d]’

y(r,s,tu) = (2.8)

Let

Y, s, t,u;z) = p(v,w,x,y; 2)
LA+, (A + 2[00+ 4,(n—1) — (1 = 8)A,) +d])s +
( ths+ [+, —1) -1 -8)A4) +d]r [+ 2,(n—1) -1 =8)A) +d?r \
[6(1 + 2,(n— D)) +d] ' [6(1 + A,(n — 1)) + d]*
| B+ 3020200 + [6(L+ L,(n— 1) — (1 — §)A,) + d])t |
k + {02, (£22:2 + 361 + 2o (n — 1) — (1 = O)A;) + d])(£2, + [6(1 + A, (n — 1) — (1 — $)4) + dD}s )
2

=¢

+[e(1 + A, (n— 1) — (1 — 8)A) + dP°r
[(1+ 2,(n— 1) +d]’

(2.9)
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The proof will make use of Theorem 1.1. Using equations (2.3) to (2.6), and from (2.9) we have
Y(0(2),2p'(2),2°p" (2),2°p"" (2); 2)
=¢ (051’7’” f(@), DI F (), DI £ (2), DL f(2); z) (2.10)

Hence, (2.2) becomes

Y((2),zp'(2),2%p" (2),2°p"" (2); 2) € Q.

Note that
t a1+ 20— D) +d] - [E+ A= D) = (1= 5)Ay) +d]*
s A w[E(1+ A= 1) +d] - [£(1 + A,(n— 1) — (1 — 8)A,) +d]v
—2[(1+ 2,(n — 1) — (1 = &)A,) + d]
and

u oyl + - D) +d]’ - [6Q + A= 1) = (1= 8)Ay) +dP
s 222 wle(1 + 2,(n — 1) +d] — [ + A(n — 1) — (1 — §)Ay) + dJv
0+ (P4 4310+ A (n— 1) — (1= 8)Ay) + d])

o1,

x[e(1+ A,(n— D) +d]* = [6(1 + ,(n — 1) — (1 — 8)Ay) + d]?v
2 w[(1+2,(n— 1) +d] - [£QA+ 2,(n—1) = (1 = &)A) + d]v
2[4+, (n—-1) -1 -8)A) +d] -1
L+ [PA+,m—1)— (1 —8)A) + d])
22),%

—3[6(1 + A,(n — 1) — (1 = &)A,) + d] <

Thus, the admissibility condition for ¢ € @[, q] in Definition 2.1 is equivalent to the admissibility condition
for i € W,[Q, q] as given in Definition 1.5 with n = 2. Therefore, by using (2.2) and Theorem 1.1, we have

p(z) = DI} f(2) < q(2).
The next result is an extension of Theorem 2.1 to the case where the behavior of q(z) on dU is not known.

Corollary 2.1. Let Q € C and let the function q be univalent in U with q(0) = 0. Let ¢ € @ [Q,q,] for
some p € (0,1), where q,(z) = q(pz). If the function f € A and q,, satisfy the following conditions:

o <§q" (f)>>0 M <k ( eu feaU\E( ))
7,0 ¢,© |77 Y "
and
¢ (D2E™ £ (2, DILI™ £ (), DI £ (2), DI (2);2) € 0
then

D'Slfl’j{z f(2)<q(z) (zeU).

Proof. Theorem 2.1 yields D‘Slnm f (z) < q(z)(z € U). The result asserted by Corollary 2.1 is now
deduced from the following subordination property: q,(z) < q(z) (z € U).

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 559-581
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If Q # C is a simply connected domain, then = h(U), for some conformal mapping p(z) of U onto Q. In
this case, the class ®[p(U),q] is written as @ [p,q]. The following result follows immediately as a

consequence of Theorem 2.1.

Theorem 2.2. Let ¢ € @ [h,q]. If the function f € A and q € Qq satisfy the following conditions (2.1)

and
¢ (DI £(2), DEL f(2), DI 2 £ (2), DL £ (2);2) < p(2), (2.11)
then
D" f(2) < q(2)(z € U).
The next result is an immediate consequence of Corollary 2.1.

Corollary 2.2. Let Q © C and let the function q be univalent in U with q(0) = 0. Let ¢ € ®,[p,q,] for
some p € (0,1), where q,(z) = q(pz). If the function f € A and q,, satisfy the following conditions:

£q" (&) DIV f(2)
Re <Tp(f)> >0, W <k, (Z ey, E € aU\E(qp)),
and
® (D05, F @ DI F @, DI @, DI f(@)iz) < p2)
then

DL f(2) < q(2)(z € V).
The following result yields the best dominant of the differential subordination (2.11).

Theorem 2.3. Let the function p be univalent in U and let ¢ : C* X u > C and  be given by (2.9).
Suppose that the differential equation

Y(p(2),2p'(2),2%p" (2),2°p"" (2); 2) = h(2), (2.12)

has a solution q(z) with q(0) = 0 which satisfies condition (2.1). If the function f € A satisfies condition
(2.11) and

¢ (DL F(2), DILM £ (2), DI 2 (2), DI £ (2); 2)
is analytic in U, then
DEII™ £(2) < q(2)
and q(z) is the best dominant.

Proof. From Theorem 2.1, we obtain q is a dominant of (2.11). Since q satisfies (2.12), it is also a solution

of (2.11) and therefore g will be dominated by all dominants. Hence g is the best dominant.

In view of Definition 2.1, and in the special case q(z) = Mz,M > 0, the class of admissible functions
@, [Q, q], denoted by @ [Q, M], is expressed as follows.

Definition 2.2. Let () be a set in C and M > 0. The class of admissible functions ®, [Q, M], consists of

http://www.earthlinepublishers.com
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those functions ¢ : C* x U — C such that

)

s <M 0 (k+ 21+ 2,(n—1) — (1 = 8)A,) + d])Me'?
[¢(1+2,(n— 1)) +d]
L+ QA+, -1)—A=-8) +dlK + [£(1 + 1,(n— 1) — (1 — §)Ay) + d]>)Me®
[(1+ 2,(n— 1)) +d]

)

{N+3024%(A + [((1+ ,(n— 1) — (1 — 8)Ay) + d])L
+[£2,(€22,% + 3[6(1 + A(n — 1) — (1 = 8)A,) +d])

L+ A+ 2,(n—1) — (1 —8)A) +dDK + [£(1 + A,(n — 1) — (1 — §)Ay) + d]*]|Me'®}
-1
X ([£(1 +2,(n—1))+ d]g) ;z) ¢Q, (2.13)
whenever z € U,Re(Le™") > (k — 1)kM, and Re(Ne™) > 0 forall§ € Rand k > 2.

Corollary 2.3. Let ¢ € @[, M]. If the function f € A satisfies

G CR R
and
¢ (DS F(2), DI f(2), DELITY (2, DS (2);2) € 0
Then
DL f(2)| < M.

In the special case Q = q(U) = {w: |w| < M}, the class @ [, M] is simply denoted by & [M]. Corollary

2.4 can now be written in the following form:

Corollary 2.4. Let ¢ € @ [M]. If the function f € A satisfies

"m“f(z) < kM (k=2;M > 0),

and
|¢> (D51"m f(2), DL f(2), DELR £ (2), DI £ (2); z)|

then

D™ f(z)| <M.

Example 2.1. Let Re(m) > =% £(1 +2,(n—1))+d#0,k>2andM > 0. If the function f € A

satisfies

ST ()] < M,

then

ST f (z)| <M.

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 559-581
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Proof. By taking ¢(v,w, x,y; z) = w in Corollary 2.4, we have to find the condition so that ¢ € (DD [M],

that is, the admissibility condition (2.13) is satisfied. This follows from
lp(v,w,x,y;2)| = M,
which implies

(k+[¢(1+2,(n—1)— 1 = &)Ay) +d])Me'®
[£(1 4+ 2,(n — 1)) +d]

or
lk+ (1 +2,(n— 1) — 1A =8)A) +d]l = |[¢(1 + 2,(n— D) + d]|. (2.14)
Preceding inequality (2.14), shows that
1-k
Re(m) = ——
2
Then it is sufficient to write
- "
Re(m) = >

for (2.14) holds true. Hence, from Corollary 2.4, if Re(m) = %, k =2 and

DI f(2)| < M.

DL+ f(z)| < M, then

Example 2.2. Let k = 2 and M > 0. If the function f € A satisfies

DI (2)| < kM,

and
DI (2) - DI f(2)| < d
s T DS Ol e 2= )+l
then
D™ f(2)| < M.
Proof. Let
o(wv,w,x,y;z) =w—v, Q=h(U),
where

Mz
I[£(1 + 2,(n— 1)) + 4|

h(z) = (M > 0).

In order to use Corollary 2.3, we need to show that ¢p € @ b [£2, M], that is, the admissibility condition (2.13) is
satisfied. This follows since
(k —1)Me'® M
= )
[t(1+2,(n =) +d]| ~ |[£(1+ 2,(n— 1)) + 4]

|p(v.w,x,y;2)| =

whenever z € U,8 € R and k = 2. The required result now follows from Corollary 2.3.

http://www.earthlinepublishers.com



Some Results for Third-Order Differential Subordination and Superordination ... 569

Definition 2.3. Let Q be a set in C,q € Q;NH;. The class of admissible function ®p [, q] consists of
those functions ¢: C* X U — C that satisfy the following admissibility condition:

o(wv,w,x,y;z) &€ Q

whenever
v = q() _ SO+ A -8+ A+ 0 -1 - (A -8)A) + d]q(f)

70 [e(1+ 4,(n—1)) +d](1—6)!

/ x(1 =) [6(1+ A,(n— 1) +d]° — (1 - 6)
rel [(14,(n—1) — (1= 8)A) +d](F24, %21 =82+ [6(1 + A,(n — 1) — (1 — &)A,) + d] + 2)v
k w1+ ,(n— 1) +d] - [£A+ 2, (n—1) — (1 — §)Ay) + d]v
2[6(1+ 2, (n—1) — (1 = 6)4) +d] §q"($)
_ o +2(8-2) = kRe { ,(§)+1}

y[e(1+2,(n=1))+d]’ (1-8)1-(1-8) [L(1+2, (n—1)~(1-8)A,) +d]
(22,2 (1=8)+[£(1+ 1, (n=1)—(1=8)A)+d]+2) 264, (1=8) +[(1+A, (n—1)—(1-8) 1) +d]v
02,112(w(l—s)z[€(1+,12(n—1))+a]-(ml(1-5)+[e(1+/12(n—l)-(l—sul)m]u))

w@d =1+ ,(n—D)+d] - 10— 8) +[2(1+ A,(n—1) — (1 — §)Ay) + d]v)

(22,%(6 — 8(7 + 28)) + 2[£(1 + A, (n — 1) — (1 — 8)Ay) + d]? + £2,(1 = 6)
[+ 2,(n—1)— (1 —8)A) +d] + 33— 25)
20,21 =8 [6(1 + Ap(n— D) +d]°
B[t +2,(n—1) = (1 = O)A) +d] + £4,(2 — §)] x(1=)[e(1+2,n-1)+ al]2
- (-8 [e(1+ 1,(n— 1) +d]° (%(W[t’(l +h(n=1) +d] - [£01+2,(n = 1) = (1 = 5)A1) + d]v)
_A=8A+ 20 -1) = (1= 8)A) +dI(*4° (A = 6>+ [6(1 + ,(n — 1) — (1 = §)Ay) +d] +2)v
wle(1+ 2, —1D)) +d] - [£(1+A,(n—1) — (1 = A +d]v

_2[6A+24,(n -1 -1 -8)A) +d] ) 2 {fzq”’(f)}
7 (3+2§)/2k Re TORL

where z € U,é € OU\ E(q) and k = 2.

Theorem 2.4. Let ¢ € ®p, 1[Q, q]. If the function f € A and q € Qq satisfy the following conditions:

£9" (%) DI (2)
Re( ) )z 0, R k, (2.15)
and
DI f(z) DILTTF(2) DI f(2) D51"’"+3f(z)
¢ s B R = z€ULCQ, (2.16)

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 559-581



570 Noor Yasser Jbair and Abbas Kareem Wanas

then

psnm
M <q(2) (z € U).

Proof. Define the analytic function p(z) in U by

(1 - OIDILMT , f(2)

p(z) = e : (2.17)

By using equation (1.4) and (2.17), we get

DI (02,(1 = 8) + [£(1 + Ap(n — 1) — (1 — §)Ay) + d)z+0p(2) + 24,225’ (2)
=% 1 -8)!e(1+ 2,(n— 1)) +d] '

(2.18)

Further computations show that

£20,223%p" (2) + €A, (2[2(1 + Ay (n — 1) — (1 — 8)A) + d] + £, (3 — 28))z27%p' (2)
+22,(1— &)L+ Ay (n — 1) — (1 = 5)A,) +d]
DL f (2 ) _ (€22,2(1 — 8)% + [6(1 + Ay(n — 1) — (1 — 8)Ay) + d] + 2)z2-3p(2)

10 A-(1+2,(n—1)+ d]z

(2.19)

and

32,3240 (2) + 222G + 1, (n— 1) — (1 = ) + d] + 21,2 = )}z %p" (2)
222,%(6 = 8(7+28)) + 2[£(1 + 1,(n — 1) — (1 — H)A,) + dJ?
+42 222,21 = 82+ 2[6(1 + L, (n— 1) — (1 — 8)A) + d]))} >p'(2)
(1-68)+3(3-26)
41— O[EA+ L —1) — (1 — OHA) +dI{e20,2° A - 8)? + [£(1 + ,(n— 1) — (1 — 8)Ay) +d] + 2} x
DI f(2) x (02, (1 = 8) + [6(1 + Ly (n — 1) — (1 — &)A,) + d)z*~*p(2)

) +ea,[6(1 + A,(n— 1) — (1 — 8)Ay) + d] ((

7170 A-8)[e(1+ 2, -1) +d]’
(2.20)
Define the transformation from C* to C by
v(r, s, t,u) =,
A=+ [fA+2,(n—1)— (A =8)A) +dDr + £4;s
w(r, s, t,u) =
Q-1+ 2,(n-1) +d]
222, + €A (2[6(1 + A;(n — 1) — (1 = 8)A) +d] + £4,(3 — 28))s
+2,(1=8[A +1,(n—1) — (1 —8)4,) +d]
AP =82+ [+ A(n—1) — (1 —8)A) +d] +2
x(rs,t,u) = ( 1°( ) [£( 2(n )—( )21) ] )7” 2.21)
1-0)![¢(1+2(n—1)) +d]
and
Blu+ 2226+ 4,(n—1D) — A —8)A) +d] + 4,2 - Pt
222,2(6 = 8(7 + 28)) + 2[6(1 + A,(n — 1) — (1 = §)Ay) + d]?
A (1 (£22,%(1 — 8) + 2[£(1 + 1, (n — 1) — (1 — O)Ay) + d])>
+,[2(1 + A, (n—1) — (1 —86)A,) + d] ( (1—68)+3(3 - 26)
LA = O[EA + A —1) — (A=A +dl{e21,2(1 = 82 + [£(1 + A(n— 1) — (1 — H)A) + d] + 2} x
s ) = x (EA;(1 = 8) + [£(1 + A,(n — 1) — (1 — 8)A,) + dDr

A-)[e(1+ 20— D) +d]’
(2.22)
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Let

Y(r, s, t,u;2) = p(v,w,x,y; 2)
2222t + 24, (2[6(1 + A (n — 1) — (1 = $)A) + d] +£2,(3 — 28))s
+2,(1 = [+ L, (n—1) — (1 - 8)A,) +d]
. A=)+ A +2,(n—1)— (1 —8)A) +dDr + flls (2221 = )2+ [L(L + A,(n— 1) — (1 — §)A,) +d] + 2)r

A-[e(1+ Lm—D)+d] A= )[e(1+ 20— D) +d]’
B u+ 222G+ ,(n—1) — (1 = OA,) +d] + £4,(2 — Nt
=¢ { 222,2(6 = 8(7 +28)) + 2[£(1 + 2,(n — 1) — (1 — 8)A,) + d?
A I ({’2/12(1—6)2+2[£’(1+A(n—l)—(1—6)ﬂ)+d])}
HL[EA+ A(n—1) — (1= 8)A,) +d] ( ! (1-6) +23(3 —26) '

+e4, (A= O[EA +A,(n—1) — A — A +dl{£22,° 1 - ) + [£(L + 1,(n— 1) — (1 — 5)A,) + d] + 2}
PAA =8+t +2,0—-1) -1 —-8))+dDr
(1 -8)[e(1+2,(n—1) +d]’

(2.23)
The proof will make use of Theorem 1.1. Using equations (2.17) to (2.20), and from (2.23), we obtain
lp(z1—6p(z) Z2 S5 ’(Z) Z3 -5 II(Z) Z4- -8 III(Z) Z)
DI f(2) DILTTF(z) DI F(z) DI f (2 )
- P s T A (2.24)

Hence, (2.16) becomes

V(z1%p(2),227%p' (2),237%p" (2), 24 %p"" (2);2) € Q.

Note that
x1 =81+, —1) +d]* - (1-06)
LI [+ 2,0 —1)— 1 =8)A) +d](£22A =8+ [P(1 + A, (n—1) — (1 = 8)Ay) + d] + 2)v
s k W1+ M- 1)) +d] - [£A + (-1 — (1 —8)A) +dJv
2[6(1+ 2,(n— 1) — (1 — §)A) +d] $q"(§)
- *B/ll +2(6—2) > kRe{m-i'l}

y[e(1+2,(n=1))+d]’ (1-8)1=(1-8) [£(1+1; (n—1)—(1-8)A;)+d]
(£22,%(1=8)2+[£(1+2,(n—1)—(1-8) A, ) +d]+2)
(204, (1=8)+[£(1+ 2, (n—1)=(1-8)A,)+d]v
u 22,2 (w(1-8)[6(1+A,(n—1))+d]— (€A, (1=8) +[£(1+2, (n—1)—(1-8) A, ) +d]v))

s w@d =1+ 2,(n—1D)+d] — (EA4(1=8) + [£(1 + ,(n— 1) — (1 — 8)A;) + d]v)

(£22,%(6 — 8(7 +28)) + 2[6(1 + A,(n — 1) — (1 — §)Ay) + d]? + £4,(1 — &)
[(1 4+ A,(n—1) = (1= 8)A) +d] +3(3-268)
£22,2(1 - ) [6(1 + A,(n— 1) + d]
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(=6 [e(1+ (- 1) +d]’ L (wle(1+22(n = 1) +d] - [6(1 + A2 (n — 1) — (1 — OA,) + d]v)

A=A+ H0-1) - A - 8A) +d](£24° 1A - 8)2 + [L1 + L, — 1) — (1 — 8)Ay) + d] + 2)v
wlt(1+ 2, — 1)) +d] - [£A+2,(n—1) — (1 —8)A) +dlv

_2[6A+2,(n-1D -0 -8)A) +d] 3+ 26)>.

_ Gt +2,(n—1) — (1 = A +d] + 4,2 - 8)] ( x(1=0)[e(1+2,(m— 1) + al]2

°h

Thus, the admissibility condition for ¢ € ®p 1[f2,q] in Definition 2.3, is equivalent to the admissibility

condition for Y € W,[, q] as given in Definition 1.5 with n = 2. Therefore, by using (2.15) and Theorem 1.1,
we have

A -)DERY ,.f (@)
p(z) = 211312 @

If Q # C is a simply connected domain, then Q = h(U), for some conformal mapping h(z) of U onto Q. In this

case, the class @p ;[h(U), q]. The following result follows immediately as a consequence of Theorem 2.4.

Theorem 2.5. Let ¢ € ®p, 1[Q, q]. If the function f € A and q € Q4 satisfy the following conditions (2.15)

and

(2.25)

DI f(2) DI f(2) DI f(2) DI ()
e e z | < h(2).

then

DAL f(2)
L <q(z (el

In view of Definition 2.3, and in the special case q(z) = Mz, M > 0, the class of admissible functions

®p 1[9Q, q], is expressed as follows.

Definition 2.4. Let Q be a set in C and M > 0, the class of admissible functions ®p, ;[€, M] consists of
those functions ¢ : C* X U — C such that

AL+ 04,2061 + A,(n — 1) — (1 = A +d] + £1,(3 — 28))s
4,0 =-O)[LA+ 2,7 —1)— 1 —-8)A,) +d]
({'/11(1 -8 +[A+2,(n—1)— (1= 8)A,) +dDMe® + £, 1( (22" A =8+ [L(A + ,(n — 1) — (1 — A,) + d] + 2)Me®
A-0[e(1+2,0-1) +d] a-o)[e( + 1,0 —1) +d]’
AN + 022,261+ L,(n—1) — (A = 8)A) +d] + £4,2 — HPL
222,%(6 — 8(7 +28)) +2[((1 + ,(n — 1) — (1 — &)A,) + d]? }

€n,
(PL°(A =8+ 2[L(L + A,(n— 1) — (1 — §)A,) +d])

(1-6)+33-26)
+24,(1 = O + A,(n— 1) — A — A + dl{£?A,°A = 82 + [¢(1 + 1,(n — 1) — (1 — 8)4,) +d] + 2}
(A, (1= 8) + [£(A + A,(n — 1) — (1 — &)A,) + d])Me®
A-8)e(1+ 1,0 -1)+d]’

th {H’/ll [+ 2,(n—1) = (1 = 8)A,) +d] (

(2.26)
whenever z € U,Re(Le‘ie) > (k—1)kM, and Re(Ne_w) >0 forall 8 € R and k = 2.

Corollary 2.5. Let ¢ € @p 1[9Q, q]. If the function f € A satisfies
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DI (2)
1,742 .
— i | Sk (kz2M>0),
and
, ) 1 A 2 A 3
DXL f(2) DI f(2) DI f(2) DI f(2)
e
then
DI (@)
41-6

In the special case Q = q(U) = {w: |w| < M}, the class ®p 1[€Q,q] is simple denoted by @ ;[M]. And
Corollary 2.5, has the following from:

Corollary 2.6. Let ¢ € @ [M]. If the function f € A satisties

DI f(2)
LAl L < kM (k2 2M > 0),
Z
and
D2 f(2) DI f(2) DT f(2) DI (2)
T e . e Oz <M
then
DI, f(2)
1,742
s |=M

Example 2.3. Let M > 0. If the function f € A satisfies

’

nm+1
DL f(2)
71-6 <

then

D2} f(2)
41-6

(P2, (1=8)+[2(A+ 2, (n—1)—(1-8)A,)+d])Mei® +£2, K
1-91¢(1+2;(n—1))+d]

Proof. By taking ¢p(v,w,x,y;z) =w = in Corollary 2.6, the

result is obtained.

Example 2.4. Let M > 0, and the function f € A satisfies

< kM,

nm+1
Dglﬂlz f(Z)
418
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and

Um+2 nm+1
Zhlz f(2) 2;11,12 f(2)

(1—6)![{’(1+/12(n—1))+d] e —@A=)(1+2,(n—1)) +d] e

<M[2+[¢(1+2,(n—1)) +d](2+ [¢(1 + 2,(n— 1)) + d])],

then
5 mm
D; 1,11 ;sz(Z)
71-8
Proof. Let
pw,x,y;2) = (1= [E(1+ ,(n— 1)) +d]’x + A — ! [L(1 + A,(n — 1)) +d]w

and

Q = h(),
where

h(z) =M[2+ [¢(1+2,(n— D)) +d]2+ [¢(1+2,(n— 1)) +d]]z (M > 0).

In order to use Corollary 2.16, we need to show that ¢ € @p, ;[Q, M], that is, the admissibility condition (2.26)

is satisfied. This follows since

AL+ (2061 + ,(n— 1) — (L — HA) + d] + £2,(3 — 28))s
+2, (1= &[EA +A,(n—1) — (1 = 8)A,) +d]
oo P =0 + (20 + 2,0 — 1= (1= A) + dDMe®® + LA, K (£222(1 — 8)2 + [£(1 + A,(n — 1) — (1 — §)A,) + d] + 2)Me'®
' A =8)e(1+2,(n - 1) +d] a-o)[e(1+2,0-1)+d]
P3N +022,2B{[L(1 + 4,(n — 1) — (1 — §)A,) +d] + 4,2 — 5L
2,26 —8(7 +28)) + 2[£(1 + ,(n — 1) — (1 — §)Ay) + d]? }

v

(£24,°(A = &) + 2[L(1 + A,(n — 1) — (1 — 8)4,) +d])
(1-6)+33-26)
A= OEA + A, — 1) — (1 =AY +dli{£24,° (1 = 8)? + [£(A + A,(n — 1) — (1 = &)Ay) +d] + 2}
LA =8+ [+ ,(n—1) — (1 —8)A) + d))Me®
aA-9e(1+ 1,0 -1)+d]

+h {H’/II A+ 2,(n—1) = (1 = 8)A) +d] (

Re(Le™®)+ (1 —)![¢(1+ 2, (n— 1) + d|((tA,(1 = 8) + [¢(1 + A,(n — 1) — (1 — 8)Ay) + d))
+ 2, K)M
> k(k — 1M
+ A =)L+ 2= D) +d]((tA (1= 8) + [£(1 + A,(n — 1) — (1 — §)A,) +d])
+OLK)M = M2+ [(1+ 2,(n— 1) +d](2 + [¢(1 + 2,(n— 1)) +d])],

whenever z € U,0 € Rand k > 2.

3. Superordination of the Integral Operator D‘;IZ’:;Z f(2)

In this section, the third-order differential superordination theorem for the operator D21 /’1717:{2 f(z) defined by

(1.3) is investigated. For this purpose, the class admissible function is given in the following definition.

Definition 3.1. Let Q be a set in C and g € H, with q’(z) # 0. The class of admissible functions CD; [, q]
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consists of those functions ¢ : C* x U — C that satisfy the admissibility condition:
o(uw,v,w,y;z) €Q,

whenever
P212q'(z) + m[f(1+ A,(n—1) — (1 — 8)A,) + dlq(2)
m[¢(1+2,(n— 1)) +d]

u=q(z), v=

)

x[e(1+ 2,(n— 1) +d]* = [6(1 + Ay (n — 1) — (1 — 5)A,) + d]?
A w[E(1+2,(n— 1) +d]| - [£A + A,(n— 1) — (1 — &)Ay) + d]v

—2[f1+2,(n—-1) -1 -8€)A) + d]) > % Re {un(z) 1}’

q'(2) *

. y[e(1 + 2,(n— 1) +d]° — [0 + A,(n— 1) — (1 — 8)A) + d]v
222 wle(1+ 2, (n— 1) +d] - [6A + A,(n— 1) — (1 — A +d]v
x[e(1+ 2,(n = D) +d]” = [6(1 + A,(n = 1) — (1 — )2 + d]?v
A w1+, — D) +d]| - [2A+2,(n—1) — (1 — A +dlv

(2025 + (84 +3[E(1 + A,(n = 1) = (1= §)4) +d])
o2,

—2[6(1+ L(n—1) — (1= ) +d] — 1}

‘A +[€(1+A mn—-1)->0-6)A )+d] 1 qu’”(Z)
—3[#(1+/12(n—1)—(1—6)/11)+d]< : o : >_1>2WR9( il )

where z € U, € € dU\E(q) andm > 2.

Theorem 3.1. Let ¢ € d); [Qql If f € Aand Dalnm f(z) € Qo and q € Hywith q'(z) # 0 satisfy the

following conditions:
Zq”(2)>
Re >0,
< q'(z)

¢ (DS £(2), DI f(2), DI 2 (2), DI f (2); 2)

5 nm+2
D71y, 4, f(2)

q'(2)

‘Sm,

and

is univalent in U, then
Qc {qs (051”’” f@),DZL 7 f(2), D2L 2 £ (2), DI £ (2); ) zE€ U} 3.1)
implies that
q(@) <DL f(z)  (z€U).
Proof. Let the function p(z) be defined by (2.3) and ¥ by (2.9). Since ¢ € CD; [Q,q], (2.9) and (3.2) yield
Qe {Y (p(2),2zp'(2),2°p" (2),2%p"" (2);2): z € U}.

From equations (2.7) and (2.8), we see that the admissible condition for ¢ € (I); [Q, q] in Definition 3.1 is
equivalent to the admissible condition for ¥ as given in Definition 1.7 with n = 2. Hence ¥ € ¥,'[(, q], and by
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using (3.1) and Theorem 1.2, we have
q(z) < p(2) = DI} f(2).

If Q # C is a simply connected domain, then Q = h(U), for some conformal mapping h(z) of U on to Q. In this
case, the class @, [h(U), q] is written as @ [h, q]. The following result follows immediately as a consequence
of Theorem 2.1.

Theorem 3.2. Let ¢ € ®p[h, q] and the function h be analytic in U. If the function f € A, I} nm 2,2 €Qq
and q € Hy with q'(z) # 0 satisfy the following conditions (3.1) and
¢(D51’7"‘ (2, DL £ (2), DEL £ (2), DI £ (2); z)
is univalent in U, then
h(z) < ¢ (DSI”"‘ F@). D2 £ (2), DEL P £ (2), DI f(2); z) (3.2)
implies that
q(2) < D‘slnm f(z) (zeU).

Theorem 3.1 and Theorem 3.2 can only be used to obtain subordinations of the third-order differential
superordination of the forms (3.1) or (3.2). The following theorem proves the existence of the best subordinant
of (3.2) for a suitable chosen ¢.

Theorem 3.3. Let the function h be analytic in U and let ¢ : C*x U — C and Y be given by
(2.9). Suppose that the differential equation

¥ (q(2),2q'(2),2°q" (2),2°q""(2); 2) = h(z) (3.3)
has a solution q(z) € Qq. If the function f € A, D‘slnm f(z) € Qo and q € Hy with q'(z) # 0 satisfy the
following conditions (3.1) and

¢ (DI F(2), DI £(2), DIL 2 £ (2), DELYS T F (2); 2)
is univalent in U, then
h(z) < ¢ (DI F(2), DI £(2), DI 2 (2), DI (2); 2)
implies that
q(2) < D5lnm f(z) (zel).
and q is the best subordinant.

Proof. In view of Theorem 3.1 and Theorem 3.2 we deduce that q is subordinant of (3.3).

Since q satisfies (3.3), it is also a solution of (3.2) and therefore g will be subordinants. Hence q is the best

subordinant.
Combining Theorems 2.2 and 3.2, we obtain the following sandwich-type theorem.

Corollary 3.1. Let hy and q1 be analytic functions in U, h, be univalent function in U, q, € Q, with
41(0) = q2(0) = 0 and ¢ € @ [hy, q2] N Pp[hy, q4]. If the function f € A, DIL ’;‘2 f(2) € Qy N Hy, and
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¢ (D'Sl"’" f(2), DL f(2), DELE P £ (2), DI £ (2); z)
is univalent in U, and the conditions (2.2) and (3.1) are satisfied, then
hi(2) < ¢ (DEL™ f(2), DI £ (2), DI Y2 £(2), DI £ (2); 2) < ha(2)
implies that
0:(2) <DL f(D) < a:(2)  (z€D).
Definition 3.2. Let Q) be a set in C, and q € H; with q'(z) # 0. The class of admissible function ®p, ; [, q]
consists of those functions ¢ : C* X U — C that satisfy the following admissibility condition:
pw,w,x,y;§) €N
whenever

fﬂlzq @)+mfA,1-8)+2A+A,n—-1) -1 -8)A)+ d]q(z)
m[€(1 + 2,(n — 1)) + d](1 — 5)!

v =q(2),

and

x(1 =) [e(1+ 2,(n—1) +d]* = (1 - 8)

Re ([1?(1 + L, —1) — 1= &A) +d](#*1,°A =8>+ [ + 1, (n— 1) — (1 — §)A,) + d] + 2)v

w1+ 2, =) +d] - [£A+2,(n—1) — (1 — 8)A,) + dJv

201+ A, (n—-1) -1 =-6)A) +d 1 zq" (z
| 20601+ 2y Q-+dl o o |1 @
25 m q'(2)
/ y[£(1+2,(n—1))+a]’ (1=8)1-(1-8) [L(1+2, (n—1)~(1-8)A) +d]
(22,20 8)*+(1 +15(n=1)~(1=8) L) +d1+2) 2L (1=8)HEA +Ap (=)= (U=8)A)+dv

Re | 2222 (Ww(1=-8)1[£(1+2,(n—1)) +d] - (LA, (1~8) +[£(1+2, (n-1) - (1—-8)A,) +d]v))
w1 =) [(1+2,m—1)) +d] - EA4,A =8+ [£(1+ A,(n—1) — (1 — 5)A,) + d]v)

(22,%(6 — 8(7 + 28)) + 2[£(1 + A, (n — 1) — (1 — 8)Ay) + d]? + £2,(1 = 8)
[f(1+,(n—1) — (1 —8)A) +d] + 33 —268)
20,21 -8 [e(1 + Ap(n— D) +d]°
B[t +2,(n—1) = (1 = A + d] + £4,(2 — §)] x(1=)[e(1+2,n-1)+ al]2
- 2,1 =) [(1+ ,(n— 1) +d] (%(W[t’(l + (= 1D) +d] = [LA+2(n - 1) = (1 = §)A) + d]v)
_A=8A+ 0 —1) = (1= 8)A) +dI(0*4°(1 = 8> + [6(1 + A,(n — 1) — (1 = §)Ay) +d] +2)v
wle(1+ 2, —1D) +d] - [£(1+A,(n—1) — (1 = A +dv

2[[(1 + Az(n — 1) — (1 — 6)2.1) + d] 1 ZZqI/I(Z)
) 2 -6+ ) = v )

where z € U,£ € 0U \ E(q) and m = 2.
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D™ f(2)
eorem 3.4. Let ¢ € ®p 410, q the function f € —E 1 and q € Hy with q'(z) #
Th 34. L @5 1[0, q). If the fi A and 2222 9, and H, with q'(2)

0 satisfy the following conditions:

24" 2) Dgzgfglf(z)
Re( e ) 20, [ —|<m (3.4)

and

1 2 3
DI f(2) DILTT f(2) DI f(2) DI f ()
e e

is univalent in U, then

. { (Dwy"; f(2) DI f(2) DI f(2) DI () )ZeU} (35)

216 ' 418 ' -8 ' 418

implies that

DIL f(@)
q(z) < —“fﬂs (zeU).

Proof. Let the function p(z) be defined by (2.17) and 1 by (2.23). Since ¢ € @ 4[Q,q], (2.24) and (3.5)
yield
Qc Y (p2),20'(2),2°p" (2),2°p""(2); 2) : z € U}.
From equations (2.21) and (2.22), we see that the admissible condition for ¢ € @[, q] in Definition 3.2 is
equivalent to the admissible condition for i as given in Definition 1.7 with n = 2. Hence ¥ € W[, q], and by
using (3.4) and Theorem 1.2, we have
pSsm
D715, (@)
q(z) <p(2) = %
If Q # C is a simply connected domain, then Q = h(U), for some conformal mapping h(z) of U on to Q. In this
case, the class ®p4[h(U),q] is written as ®p,[h,q]. The following result follows immediately as a

consequence of Theorem 3.4.

6171 m f(2)

Theorem 3.5. Let ¢ € @p,4[h, q] and the function h be analytic in U. If the function f € A, %
Q4 and q € Hy with q'(z) # 0 satisfy the following conditions (3.5) and

¢< 5177771 f(Z) D5177m+1f(z) D61Um+2f(z) D51nm+3f(z) )

215 e .

is univalent in U, then

DILTF(2) DL () DI f(2) DI ()
h(z) < ¢ -8 ' -8 T -8 -8 2

implies that

DS
q(z) < %ﬂ), (z € U).
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Combining Theorem 2.5 and 3.5, we obtain the following sandwich-type theorem @}, 1 [, q].

Corollary 3.2. Let hy and qq be analytic functions in U, h, be univalent function in U, q, € Q, with
q1(0) = q2(0) = 0 and ¢ € @p 1[h;,q,] N Pp 1[hy, q1]. If the function

synm
A D; 11 Azf(z)

) Zl —5 EQI n}[ly

and

) 1 A 2 3
DL f(2) DI f(2) DIL T f(2) DO f(2)
e e

is univalent in U, and the condition (2.13) and (3.5) are satisfied, then

DI F(2) DIGITTf(2) DI f(2) D5I/{77f{2+3f( 2 Z) < hy(2)
2

hi(2) < (,i)( Z1 6 ’ 71-8 ’ 71-6 71-8

implies that

DI @)
G <L <) e U)

4. Conclusion

The primary objective was to use the fractional derivative in a complex domain and define a certain suitable
classes of admissible functions in the open unit disk defined by differential operator. We considered several
properties associated with third-order subordination and superordination to obtain a sandwich theorem. As
future research directions, the contents of the paper on fractional derivative could in spire further research
related to other classes.
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