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Abstract

In this paper, we define some new matrices similar to the classical matrices introduced by Gould in [9].

We calculate the nth powers of the new matrices by diagonalizing them with the help of eigenvalues

and eigenvectors. Thus, by making use of Binomial expansions, we obtain new identities containing

generalized Fibonacci and Lucas numbers. These new results inform us about the relationships between

matrix algebra and sequence theory, especially in the context of generalized Fibonacci and Lucas

sequences.

1 Introduction

Let k and t be distinct integers such that k2 + 4t 6= 0. For n ≥ 2, the generalized Fibonacci sequence

(OEIS A015441), denoted by (Un(k, t)), is defined as

U0(k, t) = 0, U1(k, t) = 1, Un(k, t) = kUn−1(k, t) + tUn−2(k, t)

and the generalized Lucas sequence (OEIS A075117), denoted by (Vn(k, t)), is defined as

V0(k, t) = 2, V1(k, t) = P, Vn(k, t) = kVn−1(k, t) + tVn−2(k, t).

The characteristic equation for these sequences is x2 − kx− t = 0, with roots given by

α =
k +
√
k2 + 4t

2
and β =

k −
√
k2 + 4t

2
.
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Un(k, t) and Vn(k, t) are called nth generalized Fibonacci and Lucas numbers, respectively. Furthermore,

for n ∈ N, the negative-indexed generalized Fibonacci and Lucas numbers are defined as

U−n(k, t) = −(−t)−nUn(k, t) and V−n(k, t) = (−t)−nVn(k, t). (1)

These sequences are defined firstly by Lucas in [2]. When k = t = 1, these sequences reduce to the

Fibonacci sequence (OEIS A000045) (Fn) and the Lucas sequence (OEIS A000032) (Ln), respectively.

From now on, for simplicity we will write Un = Un(k, t) and Vn = Vn(k, t).

The Binet’s formulas for the generalized Fibonacci and Lucas numbers are given by

Un =
αn − βn

α− β
and Vn = αn + βn.

For any integer n, the identity

Vn = Un+1 + tUn−1 = kUn + 2tUn−1 (2)

is well known and can be proved by the Binet’s formulas.

There exist numerous identities related to generalized Fibonacci and Lucas sequences in the literature.

Matrices, mathematical induction, and Binet’s formulas are frequently utilized to prove these identities.

One of the most well-known matrices used to derive these identities is the Fibonacci Q matrix:

Q =

(
1 1

1 0

)
.

The nth power of the Q matrix is

Qn =

(
Fn+1 Fn

Fn Fn−1

)
(see [3]).

The Cassini identity stated by Robert Simson in 1753,

Fn+1Fn−1 − F 2
n = (−1)n

is obtained using the equation |Q|n = |Qn| associated with the matrix Q. The same identity is also derived

from the nth power of the matrix

R =

(
0 1

1 1

)
,

whose power is

Rn =

(
Fn−1 Fn

Fn Fn+1

)
.
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In [5, 6], the authors considered the matrix M =

(
k t

1 0

)
and demonstrated that

Mn =

(
Un+1 tUn

Un tUn−1

)
.

Here, using the equality |M |n = |Mn|, the most general form of the Cassini identity

Un+1Un−1 − U2
n = (−t)n−1

is obtained. For more information and applications of these sequences one can consult [7] and [8],

respectively.

In [9], taking a 6= b, Gould showed that nth power of the matrix

(
a− b −ab

1 0

)

is (
an+1−bn+1

a−b
−ab(an−bn)

a−b
an−bn
a−b

−ab(an−1−bn−1)
a−b

)
.

Inspired of this matrix, we give some other matrices whose powers consist of the generalized Fibonacci

numbers and then we will give some identities by using those matrices. We think many of our identities

are new in the literature.

2 Main Theorems

Theorem 1. Let a and b be real numbers different from zero and each other. Then the following are true:
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M Mn

(
a+ b −a
b 0

)
1
a−b

(
an+1 − bn+1 −a(an − bn)

b(an − bn) −ab(an−1 − bn−1)

)
(
a+ b a

−b 0

)
1
a−b

(
an+1 − bn+1 a(an − bn)

−b(an − bn) −ab(an−1 − bn−1)

)
(

0 −a
b a+ b

)
1
a−b

(
−ab(an−1 − bn−1) −a(an − bn)

b(an − bn) an+1 − bn+1

)
(

0 a

−b a+ b

)
1
a−b

(
−ab(an−1 − bn−1) a(an − bn)

−b(an − bn) an+1 − bn+1

)
(

0 −b
a a+ b

)
1
a−b

(
−ab(an−1 − bn−1) −b(an − bn)

a(an − bn) an+1 − bn+1

)
(
a+ b b

−a 0

)
1
a−b

(
an+1 − bn+1 b(an − bn)

−a(an − bn) −ab(an−1 − bn−1)

)

Proof. The characteristic equation of matrix M =

(
a+ b −a
b 0

)
is λ2 − (a+ b)λ+ ab = 0, and it can be

easily seen that its roots are a and b. Since a and b are distinct eigenvalues of M , the matrix M can be

diagonalized. Firstly, the eigenvectors corresponding to the eigenvalue a for the matrix M are obtained

from the equation (
b −a
b −a

)(
x1

x2

)
= 0.

Thus, we find that

(
x1

x2

)
=

(
as

bs

)
where s 6= 0. When s = 1, we obtain

(
a

b

)
as an eigenvector. Similarly,

for the eigenvector related to b, we find the eigenvector

(
1

1

)
. Therefore, we can take P =

(
a 1

b 1

)
and

Q =

(
a 0

0 b

)
. Then, we have P−1 = 1

a−b

(
1 −1

−b a

)
since a− b 6= 0. Since M = PQP−1, it follows that

Mn = PQnP−1. Consequently, we find that

Mn =
1

a− b

(
a 1

b 1

)(
a 0

0 b

)n (
1 −1

−b a

)
=

(
an+1−bn+1

a−b
−a(an−bn)

a−b
b(an−bn)
a−b

−ab(an−1−bn−1)
a−b

)
.
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The proof are similar for the other matrices.

If a is replaced by α and b is replaced by β, where a+ b = α+ β = k, −ab = −αβ = t, then we get

an − bn

a− b
= Un and an + bn = Vn.

Therefore, the following theorem can be given easily.

Corollary 2. Let k and t be non-zero and distinct integers. Then the following identities are true.

M Mn

(
k −α
β 0

) (
Un+1 −αUn
βUn tUn−1

)
(

0 α

−β k

) (
tUn−1 αUn

−βUn Un+1

)
(

0 −α
β k

) (
tUn−1 −αUn
βUn Un+1

)
(
k α

−β 0

) (
Un+1 αUn

−βUn tUn−1

)
Theorem 3. Let n be a natural number. Then

(
k 2α

−2β −k

)n
=


(k2 + 4t)

n
2 I, n is an even natural number

(k2 + 4t)
n−1
2

(
k 2α

−2β −k

)
, n is an odd natural number

.

Proof. Since αβ = −t, we get (
k 2α

−2β −k

)2

=

(
k 2α

−2β −k

)(
k 2α

−2β −k

)

=

(
k2 − 4αβ 0

0 k2 − 4αβ

)
= (k2 + 4t)I.

Then the proof follows.
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The proof of the following theorem is omitted because it is similar to the previous proof.

Theorem 4. Let n be a natural number. Then(
k −2α

2β −k

)n
=


(k2 + 4t)

n
2 I, n is an even natural number

(k2 + 4t)
n−1
2

(
k −2α

2β −k

)
, n is an odd natural number

.

Theorem 5. If n is an even natural number, then it follows that

0 =
n∑
j=0

(
n

j

)
tjUn−2j ,

(k2 + 4t)
n
2 =

n∑
j=0

(
n

j

)
tj+1Un−2j−1,

(k2 + 4t)
n
2 =

n∑
j=0

(
n

j

)
tjUn−2j+1,

2(k2 + 4t)
n
2 =

n∑
j=0

(
n

j

)
tjVn−2j ,

and if n is an odd natural number, then it follows that

0 =
n∑
j=0

(
n

j

)
tjVn−2j ,

k(k2 + 4t)
n−1
2 = −

n∑
j=0

(
n

j

)
tj+1Un−2j−1,

k(k2 + 4t)
n−1
2 =

n∑
j=0

(
n

j

)
tjUn−2j+1,

2(k2 + 4t)
n−1
2 =

n∑
j=0

(
n

j

)
tjUn−2j .

Proof. Let N =

(
0 −α
β k

)
and M =

(
k α

−β 0

)
. Then, we find that

MN = NM = −tI,N +M = kI,M −N =

(
k 2α

−2β −k

)
.

Also,

Mn =

(
Un+1 αUn

−βUn tUn−1

)
,

http://www.earthlinepublishers.com
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(M −N)n =

(
k 2α

−2β −k

)n
= (k2 + 4t)n/2I for even n, (3)

and

(M −N)n =

(
k 2α

−2β −k

)n
= (k2 + 4t)(n−1)/2

(
k 2α

−2β −k

)
for odd n, (4)

by Corollary 2 and Theorem 3. Moreover,

(M −N)n =
n∑
j=0

(
n

n− j

)
Mn−j(−N)j =

n∑
j=0

(
n

n− j

)
Mn−2jtj . (5)

Therefore, if n is odd, then we obtain

(
k2 + 4t

)n−1
2

(
k 2α

−2β −k

)
=

( ∑n
j=0

(
n
j

)
tjUn−2j+1 α

∑n
j=0

(
n
j

)
tjUn−2j

−β
∑n

j=0

(
n
j

)
tjUn−2j

∑n
j=0

(
n
j

)
tj+1Un−2j−1

)

by using (4) and (5) and if n is even, then we obtain

(
k2 + 4t

)n
2

(
1 0

0 1

)
=

( ∑n
j=0

(
n
j

)
tjUn−2j+1 α

∑n
j=0

(
n
j

)
tjUn−2j

−β
∑n

j=0

(
n
j

)
tjUn−2j

∑n
j=0

(
n
j

)
tj+1Un−2j−1

)

by using (3) and (5). Additionally, by using (2), we get the results easily.

Theorem 6. If n is an odd natural number, then

0 =
n−1∑
j=0

tjUn−2j−1,

Vn = k
n−1∑
j=0

tjUn−2j =k
n−1∑
j=0

tj+1Un−2j−2.

Proof. Let N =

(
0 α

−β k

)
and M =

(
k −α
β 0

)
. Then, MN = NM = −tI, N +M = kI. Also,

Mn =

(
Un+1 −αUn
βUn tUn−1

)
,

and

Nn =

(
tUn−1 αUn

−βUn Un+1

)
.
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Here,

Mn +Nn =

(
Un+1 −αUn
βUn tUn−1

)
+

(
tUn−1 αUn

−βUn Un+1

)

=

(
Vn 0

0 Vn

)
= V nI

by (2) and Corollary 2. We have

VnI = Mn +Nn = (M +N)
n−1∑
j=0

M (n−1−j)(−N)j

= k

n−1∑
j=0

Mn−1−2jtj

since n is odd. Therefore, it can be seen that(
Vn 0

0 Vn

)
=

(
k
∑n−1

j=0 t
jUn−2j −αk

∑n−1
j=0 t

jUn−2j−1

βk
∑n−1

j=0 t
jUn−2j−1 kt

∑n−1
j=0 t

jUn−2j−2

)
.

This proof is completed.

Theorem 7. For natural numbers m and n, the following are true:

UmUmn+mk+m = Umn+mUmk+m + (−t)mUmnUmk,

UmUmn+mk = Umn+mUmk − (−t)mUmnUmk−m,

UmUmn+mk−m = −UmnUmk − (−t)mUmn−mUmk−m.

Proof. Let M =

(
a+ b −a
b 0

)
. If we substitute αm for a and βm for b, then we obtain the matrix

M =

(
Vm −αm

βm 0

)
. By using Theorem 1, we obtain

Mn+k =

(
Umn+mk+m

Um

−αmUmn+mk

Um
−βmUmn+mk

Um

−(−t)mUmn+mk−m

Um

)
= Mn ·Mk

=

(
Umn+m

Um

−αmUmn
Um

−βmUmn

Um

−(−t)mUmn−m

Um

)(
Umk+m

Um

−αmUmk
Um

−βmUmk
Um

−(−t)mUmk−m

Um

)
.

The proof is completed from this equality.
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Theorem 8. For any natural number n, the following hold true:

k(k2 + 4t)
n

=

2n+1∑
j=0

(
2n+ 1

j

)
tjU2n−2j+2 = −

2n+1∑
j=0

(
2n+ 1

j

)
tj+1U2n−2j , (6)

0 =
2n+1∑
j=0

(
2n+ 1

j

)
tjV2n−2j , (7)

2(k2 + 4t)
n

=

2n+1∑
j=0

(
2n+ 1

j

)
tjU2n−2j+1. (8)

Proof. Let N =

(
0 −α
β k

)
and M =

(
k α

−β 0

)
. Then

M −N =

(
k α

−β 0

)
−

(
0 −α
β k

)
=

(
k 2α

−2β −k

)
, (9)

MN = NM = −tI,

and

Mn =

(
Un+1 αUn

−βUn tUn−1

)
. (10)

From Theorem 3, we get

(M −N)2n+1 = ((M −N)2)n(M −N) = (k2 + 4t)n(M −N)

= (k2 + 4t)n

(
k 2α

−2β −k

)
. (11)

Also

(M −N)2n+1 =
2n+1∑
j=0

(
2n+ 1

j

)
M2n+1−j(−N)j

and so

(k2 + 4t)n

(
k 2α

−2β −k

)
=

2n+1∑
j=0

(
2n+ 1

j

)
M2n+1−2jtj . (12)

Therefore, by using (10), (11), and (12), we obtain(
k(k2 + 4t)

n
2α(k2 + 4t)

n

−2β(k2 + 4t)
n −k(k2 + 4t)

n

)

=

( ∑2n+1
j=0

(
2n+1
j

)
tjU2n−2j+2 α

∑2n+1
j=0

(
2n+1
j

)
tjU2n−2j+1

−β
∑2n+1

j=0

(
2n+1
j

)
tjU2n−2j+1

∑2n+1
j=0

(
2n+1
j

)
tj+1U2n−2j

)
.

Hence (6) and (8) are obtained from the matrix equality. By using (6) and (2), the equation (7) can be

shown easily.
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Theorem 9. Let m and n be natural numbers. The following holds:

V n
m =

n∑
j=0

(
n

j

)
(−t)mjUmn+1−2mj = t

n∑
j=0

(
n

j

)
(−t)mjUmn−1−2mj , (13)

2V n
m =

n∑
j=0

(
n

j

)
(−t)mjVmn−2mj , (14)

0 =
n∑
j=0

(
n

j

)
(−t)mjUmn−2mj . (15)

Proof. Let M =

(
k α

−β 0

)
and N =

(
0 −α
β k

)
. As MN = NM = −tI, then, from Corollary 2, it is

clear that

Mm +Nm =

(
Um+1 αUm

−βUm tUm−1

)
+

(
tUm−1 −αUm
βUm Um+1

)
=

(
Vm 0

0 Vm

)
= VmI,

and therefore

V n
mI = (VmI)n = (Mm +Nm)n

=

n∑
j=0

(
n

j

)
(Mm)n−j(Nm)j

=
n∑
j=0

(
n

j

)
Mmn−2mj(−t)mj .

Since

V n
mI =

(
V n
m 0

0 V n
m

)
,

we have (
V n
m 0

0 V n
m

)
=

( ∑n
j=0

(
n
j

)
Umn+1−2mj(−t)mj α

∑n
j=0

(
n
j

)
Umn−2mj(−t)mj

−β
∑n

j=0

(
n
j

)
Umn−2mj(−t)mj t

∑n
j=0

(
n
j

)
Umn−1−2mj(−t)mj

)
.

Then (13) and (15) can be easily derived. By using the identities (13) and (2), the identity (14) can be

obtained.

Theorem 10. Let m and n be natural numbers. Then the following hold true:
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If n is an even natural number, then

Unm(k2 + 4t)
n
2 = t

n∑
j=0

(
n

j

)
Umn−1−2mj(−t)mj(−1)j (16)

=
n∑
j=0

(
n

j

)
Umn+1−2mj(−t)mj(−1)j , (17)

2Unm(k2 + 4t)
n
2 =

n∑
j=0

(
n

j

)
(−1)j(−t)mjVmn−2mj , (18)

0 =

n∑
j=0

(
n

j

)
Umn−2mj(−t)mj(−1)j , (19)

If n is an odd natural number, then

kUnm(k2 + 4t)
n−1
2 =

n∑
j=0

(
n

j

)
(−t)mj(−1)jUmn+1−2mj (20)

= −t
n∑
j=0

(
n

j

)
(−t)mj(−1)jUmn−1−2mj , (21)

2Unm(k2 + 4t)
n−1
2 =

n∑
j=0

(
n

j

)
(−t)mj(−1)jUmn−2mj , (22)

0 =
n∑
j=0

(
n

j

)
(−t)mj(−1)jVmn−2mj . (23)

Proof. Let M =

(
k α

−β 0

)
and N =

(
0 −α
β k

)
. As

MN = NM = −tI, M −N =

(
k 2α

−2β −k

)
,

from Corollary 2 and Theorem 3, we have

Mm −Nm =

(
Um+1 αUm

−βUm tUm−1

)
−

(
tUm−1 −αUm
βUm Um+1

)
=

(
kUm 2αUm

−2βUm −kUm

)

= Um

(
k 2α

−2β −k

)
= Um(M −N)

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 541-557
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and

Unm(M −N)n = (Um(M −N))n = (Mm −Nm)n =
n∑
j=0

(
n

j

)
(Mm)n−j(−Nm)j

=

n∑
j=0

(
n

j

)
Mmn−2mj(−t)mj(−1)j .

If n is an even natural number, from Theorem 3, then we get

Unm(M −N)n =

(
Unm(k2 + 4t)

n
2 0

0 Unm(k2 + 4t)
n
2

)
.

Therefore,

Unm(k2 + 4t)
n
2 I =

( ∑n
j=0 Umn+1−2mjwj α

∑n
j=0 Umn−2mjwj

−β
∑n

j=0 Umn−2mjwj t
∑n

j=0 Umn−1−2mjwj

)
where wj =

(
n
j

)
(−t)mj(−1)j . The identities (16), (17), and (19) follow easily. By using (16) and (17), the

equation (18) can be shown. If n is an odd natural number, then from Theorem 3, we get

(M −N)n =

(
k(k2 + 4t)

n−1
2 2α(k2 + 4t)

n−1
2

−2β(k2 + 4t)
n−1
2 −k(k2 + 4t)

n−1
2

)
.

Therefore, we have

Unm(k2 + 4t)
n−1
2

(
k 2α

−2β −k

)
=

( ∑n
j=0 Umn+1−2mjwj α

∑n
j=0 Umn−2mjwj

−β
∑n

j=0 Umn−2mjwj t
∑n

j=0 Umn−1−2mjwj

)

where wj =
(
n
j

)
(−t)mj(−1)j . Therefore, the identities (20), (21), and (22) are obtained. By using (2),

(20) and (21), the equation (23) can be shown easily.

Theorem 11. For natural numbers m and n, the following are true:

Umn = −
n∑
j=0

(
n

j

)
(−1)n−jUmn−mjV

j
m, (24)

Umn+1 =

n∑
j=0

(
n

j

)
(−1)n−jtUmn−1−mjV

j
m, (25)

tUmn−1 =

n∑
j=0

(
n

j

)
(−1)n−jUmn+1−mjV

j
m, (26)

Vmn =

n∑
j=0

(
n

j

)
(−1)n−jVmn−mjV

j
m. (27)
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Proof. Let M =

(
k α

−β 0

)
and N =

(
0 −α
β k

)
. From Corollary 2, we obtain

Mm +Nm =

(
Um+1 αUm

−βUm tUm−1

)
+

(
tUm−1 −αUm
βUm Um+1

)

=

(
Vm 0

0 Vm

)
= VmI,

Mmn =

(
Umn+1 αUmn

−βUmn tUmn−1

)
,

and

Mmn = (Mm)n = (−Nm + VmI)n

=

n∑
j=0

(
n

j

)
(−Nm)n−j(Vm)j

=
n∑
j=0

(
n

j

)
(−1)n−jNmn−mjV j

m. (28)

By using (28), we find that(
Umn+1 αUmn

−βUmn tUmn−1

)
=

(∑n
j=0 tUmn−1−mjwj −α

∑n
j=0 Umn−mjwj

β
∑n

j=0 Umn−mjwj
∑n

j=0 Umn+1−mjwj

)

where wj =
(
n
j

)
(−1)n−jV j

m. The identities (24), (25), and (26) are obtained easily. The equation (27) can

be shown by using the identities (2), (25), and (26).

Theorem 12. The following hold true:

If n is even natural number, then

(k2 + 4t)
n
2 =

n∑
j=0

(
n

j

)
tjUn−2j+1 =

n∑
j=0

(
n

j

)
tj+1Un−2j−1,

0 =

n∑
j=0

(
n

j

)
tjUn−2j ,

2(k2 + 4t)
n
2 =

n∑
j=0

(
n

j

)
tjVn−2j
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and if n is odd natural number, then

Vn = k

n−1∑
j=0

tjUn−2j =k

n−1∑
j=0

tj+1Un−2j−2,

k(k2 + 4t)
n−1
2 =

n∑
j=0

(
n

j

)
tjUn−2j+1 = −

n∑
j=0

(
n

j

)
tj+1Un−2j−1,

2(k2 + 4t)
n−1
2 =

n∑
j=0

(
n

j

)
tjUn−2j ,

0 =

n−1∑
j=0

tjUn−2j−1 =

n∑
j=0

(
n

j

)
tjVn−2j .

Proof. Let N =

(
0 α

−β k

)
and M =

(
k −α
β 0

)
. Then

MN = NM = −tI,N +M = kI,M −N =

(
k −2α

2β −k

)
.

On the other hand, using Corollary 2, Theorem 4, and the identity (2), we get :

(M −N)n =

(
k −2α

2β −k

)n
= (k2 + 4t)n/2I for even n, (29)

(M −N)n =

(
k −2α

2β −k

)n
= (k2 + 4t)(n−1)/2

(
k −2α

2β −k

)
for odd n, (30)

Nn =

(
tUn−1 αUn

−βUn Un+1

)
,

Mn =

(
Un+1 −αUn
βUn tUn−1

)
,

and

Nn +Mn =

(
tUn−1 αUn

−βUn Un+1

)
+

(
Un+1 −αUn
βUn tUn−1

)
=

(
Vn 0

0 Vn

)
. (31)

Moreover, we have

Nn +Mn = (N +M)
n−1∑
j=0

(−1)jM jNn−1−j = k
n−1∑
j=0

Nn−1−2jtj for odd n (32)

and

(M −N)n =

n∑
j=0

(
n

n− j

)
Mn−j(−N)j =

n∑
j=0

(
n

n− j

)
Mn−2jtj . (33)
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Thus, if n is odd natural number, then we obtain(
Vn 0

0 Vn

)
= k

n−1∑
j=0

Nn−1−2jtj =

(
kt
∑n−1

j=0 t
jUn−2j−2 αk

∑n−1
j=0 t

jUn−1−2j

−βk
∑n−1

j=0 t
jUn−1−2j k

∑n−1
j=0 t

jUn−2j

)

by using (31) and (32) and

(
k2 + 4t

)n−1
2

(
k −2α

2β −k

)
=

(∑n
j=0

(
n
j

)
tjUn−2j+1 −α

∑n
j=0

(
n
j

)
tjUn−2j

β
∑n

j=0

(
n
j

)
tjUn−2j

∑n
j=0

(
n
j

)
tj+1Un−2j−1

)

by using (30) and (33). Moreover, if n is even natural number, then we obtain

(
k2 + 4t

)n
2

(
1 0

0 1

)
=

n∑
j=0

(
n

n− j

)
Mn−2jtj

=

(∑n
j=0

(
n
j

)
tjUn−2j+1 −α

∑n
j=0

(
n
j

)
tjUn−2j

β
∑n

j=0

(
n
j

)
tjUn−2j

∑n
j=0

(
n
j

)
tj+1Un−2j−1

)

by using (29) and (33). The above identities follows easily from the matrix equality and the identity

(2).

Theorem 13. For any natural numbers m and n, the following hold true:

0 =

n∑
j=0

(
n

j

)
(−t)mjUmn−2mj

Um
,

UmV
n
m =

n∑
j=0

(
n

j

)
(−t)mjUmn−2mj+m = −

n∑
j=0

(
n

j

)
(−t)mj+mUmn−2mj−m.

Proof. Let M =

(
0 −b
a a+ b

)
and N =

(
a+ b b

−a 0

)
. Here, substituting a with αm and b with βm, we

have M =

(
0 −βm

αm Vm

)
and N =

(
Vm βm

−αm 0

)
. Clearly,

M +N =

(
0 −βm

αm Vm

)
+

(
Vm βm

−αm 0

)
=

(
Vm 0

0 Vm

)
= V mI

and

MN = MN = (−t)mI. (34)

In this case,

V n
mI = (VmI)n = (M +N)n =

n∑
j=0

(
n

j

)
Mn−jN j . (35)
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Furthermore, by using (34), we have

Mn−jN j = Mn−2j(−t)mj . (36)

Thus, by using (35) and (36), we get

V n
mI =

n∑
j=0

(
n

j

)
Mn−2j(−t)mj .

By using Theorem 1, we obtain

Mn =

(
−(−t)mUmn−m

Um
−βmUmn

Um

αmUmn
Um

Umn+m

Um

)
.

Then, it follows that(
V n
m 0

0 V n
m

)
=

(∑n
j=0

(
n
j

)
(−(−t)m)(−t)mj Um(n−2j)−m

Um

∑n
j=0

(
n
j

)
(−βm)(−t)mj Um(n−2j)

Um∑n
j=0

(
n
j

)
αm(−t)mj Um(n−2j)

Um

∑n
j=0

(
n
j

)
(−t)mj Um(n−2j)+m

Um

)
.
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