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Abstract

This article deals with two fundamental topics in mathematical analysis: the formulation of integral
expressions and the derivation of integral inequalities. In particular, it introduces new one-parameter
integral formulas and inequalities of the logarithmic type, where the integrands involve the logarithmic
function in one way or another. Among the results are weighted Holder-type integral inequalities and
two different forms of Hardy-Hilbert-type integral inequalities. These results are illustrated by various

examples and accompanied by rigorous proofs.

1 Introduction

The concept of the integral is central to mathematical analysis. It is used to measure areas, volumes and
other quantities resulting from continuous change. In particular, integral calculus forms the basis of many
advanced fields, including Fourier analysis, operator theory and probability theory. These fields primarily
use integrals to analyze and understand complex phenomena. Key tools in this area also include integral
formulas and inequalities. In particular, integral formulas allow certain quantities to be evaluated directly.
Conversely, integral inequalities help to bound and compare integrals under different conditions. A large

collection of integral formulas can be found in [1|. Famous books on integral inequalities include [2—0].

Among the best known integral inequalities are the Holder and Hardy-Hilbert integral inequalities. The
formal statement of the Holder integral inequality for non-negative functions is given below. Let p > 1,
g = p/(p — 1) be the Holder conjugate of p, satisfying the identity 1/p+ 1/¢ = 1, and f,g : (0,4+00) —
(0, +00) be two functions such that [, f?(z)dz < +oo and [, g9(y)dy < +oo. Then we have

[ @< [ [ o] " [ swal "
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The upper bound, including the constant factor equal to 1, is sharp. Within the same framework, the

Hardy-Hilbert integral inequality states that

/O+oo /OJFOO . i yf(a;)g(x)da: < Sm(ﬂw [/O+OO fp(x)dx] 1/p |:/0+oo gq(y)dy} l/q.

The upper bound, including the constant factor equal to m/sin(mw/p), is known to be sharp. These two

inequalities have inspired a great deal of research. Often, extensions introduce additional parameters,
weight functions, higher dimensions, or modified functional forms, resulting in new variants. For a detailed
overview of these developments, see the survey [20] and the books [2, 8]. Recently, there has been a growing

interest in integral inequalities with innovative functional structures, extending their range of applications.

In this article, we focus on Hardy-Hilbert-type integral inequalities, specifically those of the logarithmic
type, also known as logarithmic-type Hardy-Hilbert integral inequalities. These inequalities have the
feature of incorporating a logarithmic function in one way or another. We now present a brief overview of
the subject, beginning with a key result from [2]. Let p > 1, q =p/(p—1) and f,g: (0,400) — (0,+00)

be two functions such that f0+ fP(x)dx < 400 and fo (y)dy < +o00. Then we have
+o00 +o00 log l‘/y T 2 +o00 1/p +o00 1/q
gydwdyé[.] [/ fp:vdx] [/ gqydy} :
I F(x)a(y) | | e )
In a similar framework, | ] provides the following result:
+00 1+ | og (2 /y)] +00 p 1 pdoo 1/q
drdy < (p* + ¢ P(z)d U(y)d :
/ / maxxyf(w)g(y)wy_(p +Q)U0 fP(x) $] [/0 9'(y) y}
A complementary result is given in [11]. For the special case p = 2, it ensures that
400 p4oo 10 T +0c0 1/2 +o0 1/2
/ / LB/ 1))y < 31 [/ f2(fv)dw] [/ gg(y)dy} :
Tty 0 0
where
= JFZOO ﬂ =~ 0.915966
L CT R e ’

which corresponds to the Catalan constant.

An additional related result from [12]| is presented below. Let p > 1, ¢ = p/(p — 1), r,s,e > 0
and f,g : (0,4+00) +— (0,+00) be two functions such that f0+ooxp(1_e/r)_1fp($)dx < 400 and
f0+°O ya(=¢/9)=1g4(3)dy < +o0. Then we have

/ - / - log x/y f(@)g(y)dzdy

400 p 1 ptoo 1/q
(1—e/r)—1 g(l—e/s)—1
- [smwm] Uo T T A
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We may also mention some more contemporary results in [13] for the case p = 2, as stated below. Let
£,9: (0, 400) = (0,+00) be two functions such that [ 2~! f2(2)dz < +00 and [}y g?(y)dy < +o0.

Then we have
+oo  ptoo 10g$/y
dxd
[ 2 rwatwsdy

< H;gw [/0 :v_lfQ(:v)d:E] v [/(:OO y_ng(y)dy} 1/2,

where 16v/37/243 = 0.35828.

A slight variation yields

[ R gtasay

—xy+y
1/2

< 43;(?% UO :vlfQ(w)div] " [/Om ylg?(y)dy} :

where 43/37/36 ~ 6.49944.

Another complementary result from [13] is given below. Let f, g : (0,+00) — (0, +00) be two functions
such that f0+°° v~ f%(2)dx < +oo0 and f0+°° y~39?(y)dy < +oo. Then we have

/ﬁo/ﬁo @y o8(z/v) f(z)g(y)dzdy

)(2* + y?)
1/2 1/2
< 317:3 UO a7l f(2)d ] / [/Om y_392(y)dy} / :
where 372/16 ~ 1.85055.
We conclude this overview with a recent result from [11], which has the capability to deal with three

adjustable parameters. Let o > 1, y,w > 0, f,g : (0,400) — (0,400) be two functions such that
O+OO f?(x)dr < +o0o and f+oo 2(y)dy < +o00. Then we have

[

wT +y

< 2iog [ (1) [ ][ [ #wm]

In particular, if we take 0 =1, y =1 and w = 1, then it reduces to

1/2

1/2

/ - / A DIY) p o ddy < 2m108(2) [ / +°O f2<x>dx] - [ / +°° 92<y>dy] ,

r+y
where 27 log(2) ~ 4.35517.
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These inequalities are innovative because of the structure of their integrands and constant factors,
which are expressed in a way that guarantees sharpness. They thus offer valuable tools for solving
intricate integral problems involving logarithmic functions and sophisticated functional forms. However,
further research in this area remains necessary, particularly in light of potential new developments in

logarithmic-type integral formulas.

1.1 Contributions

In continuation of the above results, this article introduces new logarithmic-type integral formulas that are
not included in [1]. These formulas are distinguished by their tractability and dependence on an adjustable

parameter. To illustrate this, we present a particularly elegant and simple result below. Let v € [0,4).

+001 t 12
/ ~log [ D) (e +1) ]dt:élarctanQ[ S -
g t 2+ (2-y)t+1 4—~

These integral formulas serve as the basis for deriving new weighted Holder-type integral inequalities

Then we have

and two different forms of Hardy-Hilbert-type integral inequalities. These inequalities also depend on an
adjustable parameter, allowing greater flexibility and applicability. One example is presented below.
Let p > 1, ¢ = p/(p — 1), v € (0,4), and f,g : (0,400) — (0,400) be two functions such that
f0+°° 2P~ fP(x)dxr < +o0o and f0+°° Y9~ 1g%(y)dy < 4+o0. Then we have

[ o

-4 o [ +00 . 1p r ptoo g 1/q
< 4arctan . 2P~ fP(z)dx Yy g(y)dy :
v 0 0

In particular, the obtained inequalities obtained have a completely different form from those in [2, 10—

, 11] (see the previous subsection for details). In this way, we complete the collection of logarithmic
Hardy-Hilbert-type integral inequalities by introducing a new integral formula approach that emphasizes

simplicity, adaptability, and analytical power.

1.2 Organization

Section 2 presents the new integral formulas, including those of the logarithmic type. Section 3 builds
on these formulas to derive new integral inequalities. Finally, Section 4 offers concluding remarks and

discusses possible extensions and applications.

http: //www. earthlinepublishers.com
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2 New Integral Formulas

2.1 A simple integral formula

The proposition below gives a simple formula for a special one-parameter integral. The proof is mainly

based on the square root and arctangent primitives.
Proposition 2.1. Let o € (—2,2]. Then we have

2 ifa=2

—dt = 4 T «
1+t+ avt —— < — —arctan | —— ifa € (—2,2
’ Vi 5 ) recce

Proof of Proposition 2.1. For o = 2, using a suitable expression for the denominator, and the ratio

and square root primitives, we get

/+oo t—l/Q +o0 t—l/Q +o0 t_1/2 |: 1 :|t%+oo .y
0

—  dt= — dt= —_dt=|-2———
L+t +avt 0o l+t+2vt o [1+Vt? 1+ Vil

For a € (—2,2), arranging the expression of the denominator, and using the arctangent and square

root primitives, we obtain

—+00 t—1/2 +0o0 t—l/?
/ ——dt = dt
0o l+t4+an/t o 1—a2/4+ (Vt+a/2)?
i—1/2

1 +oo
T a2/4/o T (Vi + a2l T

t—t
1 0 /1 o? " Vit+a/?2 e
=— — —arctan | ———
1-a2/a |V "1

1—a?/4

S S E—arctan 705/2
J1—aZ/4 )| 2 1-—a?/4

4 {71'
= —— ¢ — — arctan

1—a? |2 [\/K%H

Thus, Proposition 2.1 is proved. O

t=0

We can also prove that the integral is divergent for a < 2 and convergent for o > 2. However, its

analytical expression in the case o > 2 remains undetermined.

Using the arctangent identities arctan(a) 4+ arctan(1/a) = 7/2 if a > 0, and arctan(a) + arctan(1/a) =

Earthline J. Math. Sci. Vol. 15 No. 5 (2025), 685-715
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—m/2 if a < 0, the integral formula in Proposition 2.1 can also be expressed as

P ifa=2
too 4-1/2 4 V4O‘2]
L at={ Vi—a a
/0 1+t+avi “

! + arct 1=l 0 e (—2.0)
y— N [ arctan | —— 1T ¢ — .
Viat o |

As these different expressions for a € (—2,0) and a € (0,2) offer no practical advantage for further

arctan [ if a € (0,2),

development, we will focus on the original formulation in Proposition 2.1.

Some special examples of integral values are given below. If we take o = 0, using the identity

“+oo t_1/2
/ dt = .
o 1+t

If we take o = 1, using the identity arctan[1/v/3] = 7/6, then we get

arctan(0) = 0, then we have

/*+oo 75—1/2 gt A
o l+t+vt  3V3
As a last example, if we take o = —1, using the identity arctan[—1/v/3] = — arctan[1/y/3] = —7/6, then
we obtain
o l+t—vt  3V3
Such simple one-parameter formulas can be used to derive more complex results. This topic is covered in

the subsection below.

2.2 New one-parameter logarithmic-type integral formulas

The proposition below introduces a new one-parameter logarithmic-type integral formula involving the
arctangent function. Its proof relies mainly on integrating the result in Proposition 2.1, treating the

parameter « as a variable, and using the logarithmic and arctangent primitives.

Proposition 2.2. Let § € (—2,2). Then we have

+oo
/0 %log [1 + ﬂl\ft} dt =2 {7T — arctan [\/46—762] } arctan [4{52] )

http: //www. earthlinepublishers.com
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Proof of Proposition 2.2. Proposition 2.1 implies that, for any « € (—2,2), we have

400 1/2 4 T a
dt = — —arctan | ———| ;.
/0 1+t+avt v4—o<2{2 {\/4—09]}
Integrating both sides with respect to a with a € (0, 8), recalling that 8 € (—2,2) (it can be negative),
we get the identity

A=A,

B +0o0 t—1/2
A= — - _atYda
/0 /0 1+t+a\f

where

and

A /B 4 {W arctan[ @ }}d
= —_— ¢ — — S Q.
* 0 Vd—a? |2 Va4 —a?

For the term A, the Fubini-Tonelli integral theorem allows the order of integration to be exchanged since

the integrand is non-negative. This, followed by the use of the square root and logarithmic primitive, gives

+o00 1/2 400 a=
A= / {/0 1+t+a\[ }dt:/o [log[1+t+a\/iﬂa:§dt
:/0 {log [1 —I—t—f—B\[} log(1 —I—t)}dt:/(:ooilog [14—51\_/54 dt.

For the term Ay, developing basically the integral, and using the square root and arctangent primitives,

we obtain

arctan {

A*:%/fﬁ /m Py

« a=p « a=f
= 271 |arctan | —— _—
|: |:V4_a2:|:|040 \/4_052:|:|o¢0

= 2w arctan [\/45—752] — 2arctan? [46—[32]

= 2 < m — arctan L arctan L .
V4 —p? 4— 2

+oo
/0 %log [1 + ﬂlet} dt =2 {77 — arctan [\/46_752] } arctan [45_&] )
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This concludes the proof of Proposition 2.2. O

To our knowledge, this formula does not appear in the reference book [!]. By analyzing the sign of the
integrand and the resulting expression, we can also derive an absolute value version of the formula, which

is stated as follows:

[
0 t

However, we do not make use of it in the present study.

\/i = — arctan L arctan &
log[1+ﬂ1+tHdt—2{w t [\/4—752]} t [\/4_762]

Some special examples of Proposition 2.2 are given below. If we take 8 = 1, using the identity
arctan[1/y/3] = m/6, then we have

+001 t 2
/ tlog{l—k\[]dtzfm.
0

1+¢ 18

If we take 3 = —1, using the identity arctan[—1/+/3] = — arctan[1/v/3] = —r/6, then we obtain

+001 t 72
/ Lioglio Y g ™
ot 1+t 18

The proposition below presents a condensed integral formula, derived as a consequence of Proposition
2.2.

Proposition 2.3. Let 8 € (0,2). Then we have

ol 2 ¢ _ 2 B
/0 Zlog [1 - B W] dt = —4 arctan [4_52] .

Proof of Proposition 2.3. Using a basic logarithmic property, Proposition 2.2 two times and the fact

http: //www. earthlinepublishers.com
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that the arctangent function is odd, we have

I e ey A (et e
:%Tmlbgb—ﬂwf]ﬁ+/%wlbgb+ﬂ\iJﬁ

=2 {71' — arctan [ ] } arctan [ 5 ]
4 — 52
+ 2< ™ — arctan arctan
{r -t | ] |
= -2 {77 + arctan [ ] } arctan [ b ]
4 — ﬂQ
+ 2 < m — arctan arctan
-] e

= —4arctan® [\/_752] .

This concludes the proof of Proposition 2.3. O

This formula is also not contained in [!] and is original in form. Note that all of the terms on both

sides are negative.

We conclude this section with an elegant variant of Proposition 2.3. This result incorporates a more
comprehensive rational polynomial expression within the main logarithmic term of the integral, and deals

with positive terms on both sides.

Proposition 2.4. Let v € [0,4). Then we have

+001 t 12
/ — log [ 2 i+ 1) ]dt:4arctan2[ S
g t 2+ (2—-y)t+1 4—~

Proof of Proposition 2.4. It follows from Proposition 2.3 applied with 8 = /v that

“log |1 —y———| dt = —darctan® |, | ——
A K

This, together with the management of the minus sign and a basic property of the logarithmic function,

+oo 1 t ]t
/ ~log [1 -7 2} dt = 4 arctan? [ -

Earthline J. Math. Sci. Vol. 15 No. 5 (2025), 685-715
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Developing the term into the logarithmic function yields

+C>01 t 12
/ —log [ D) (e +1) ]dt:4arctan2[ .
g t 2+ 2-y)t+1 4—~

This concludes the proof of Proposition 2.4. O

In particular, if we take v = 1, using the identity arctan[1/v/3] = 7 /6, then we get

+Ool t 12 2
/ ~log 2<+7) df =
0 t t“+t+1 9

If we take v = 2, using the identity arctan(1) = m/4, then we obtain the following simple and elegant

+O<>1 <t+1)2 7T2
| -
/0 tog[t2—|—1]dt 4

If we take v = 3, using the identity arctan[v/3] = /3, then we find that

400 2 2
0

formula:

t t2—t+1 9

These formulas have a wide range of potential applications. These include evaluating complex integrals,
developing analytical bounds, and refining mathematical models involving logarithmic terms. In this study,
we use them to make new contributions to the field of integral inequalities, as discussed in the section

below.

3 Integral Inequalities

This section is mainly devoted to new weighted Holder-type integral inequalities and new Hardy-Hilbert

integral inequalities, with a focus on the logarithmic type.

3.1 New weighted Holder-type integral inequalities

The proposition below introduces the topic by presenting a simple weighted Hélder-type integral inequality,
which is derived from Proposition 2.1. Although the inequality is not of logarithmic type, it is of interest

from an analytical point of view.

http: //www. earthlinepublishers.com
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Proposition 3.1. Letp>1,q=p/(p—1), a € (=2,2) and f : (0,+00) — (0,+00) be a function such
that f0+oo t@=D/2 fa(t)dt < +o0o. Then we have

400 1
F(t)dt
A p+t+aﬁT”()

41/p - @ 1/p +o0 1/q
= ) _ - (a=1)/2 £q
< (A= a2/ {2 arctan [m} } {/0 t fa(t)de .

Proof of Proposition 3.1. By means of a suitable product decomposition of the integrand with the aim

of using Proposition 2.1, followed by the Holder integral inequality, we find that

+o00 1 +o00 +—1/(2p) 1/(2p)
/ l/pf(t)dt:/ D (bt
0 [1+t+aVi] 0 [1+t+aVi]

400 t_1/2 1/p 400 J(2p) 1/q
< —dt t4/\eP) £9(¢) dt .
B A 1+t+ o/t LA f()]

By virtue of Proposition 2.1 with a € (—2,2) and the identity ¢/(2p) = (¢ — 1)/2, we obtain

+o00 25—1/2 1/p +o00 /(2p) 1/q
_—dt t9/EP) £ () dt
A 14+t4+avt [A f()]

41/p T a 1/p +o0
_ n_ (a=1)/2 ¢q
— 4 a2/ { 5 arctan [ o aJ } [/0 t f (t)dt]

1/q

So we have

+00 1
F(t)dt
A p+t+aﬁT”()

41/p T o 1/p +o0 1/q
= )z _ = (g=1)/2 rq
< (A= a?)1/) {2 arctan [ - QQ} } {/0 t f (t)dt] )

This concludes the proof of Proposition 3.1. O

In particular, if we take a = 0, then this inequality reduces to

t/+m1f@yﬁ<:wVpL/+mt@””f%wd%1M
o (L+t)tr - 0 .

If we take o = 1, using the identity arctan[1/v/3] = 7/6, then we have

+o00 1/p.1/p +o0 1/q
/ ;l/f(t)dt < 43/% [/ t(q_l)/2fq(t)dt:| )
o [1+t+it] 324 Lo

Earthline J. Math. Sci. Vol. 15 No. 5 (2025), 685-715
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If we take o = —1, using the identity arctan[—1/v/3] = — arctan[1/+/3] = —7/6, then we obtain

+00 1/p.1/p +00 1/q
/ ;1/ F(t)dt < % [ / t@=D2pagyqe|
N 32 Lo

Our first weighted logarithmic Hélder-type integral inequality is presented below. It is based mainly
on Proposition 2.2, focusing on the range of values 8 € [0,2), for which the integral expression remains

positive.

Proposition 3.2. Letp > 1, g=p/(p—1), 8 €1[0,2) and f : (0,+00) — (0,+00) be a function such
that f0+°o t4=Lfa(t)dt < +o00. Then we have

+o0
/0 log!/? [1 + Bl\ft] f(t)dt

1/p oo 1/q
B cetanl/ B [ T et }
N/ 52] } arctan™/? [\/4—752] /0 t fA(t)dt .

Proof of Proposition 3.2. By means of a suitable product decomposition of the integrand with the aim

< 21/p {7T — arctan

of using Proposition 2.2, followed by the Hélder integral inequality, we get

+00 \/i too 1 \/i
/0 log!/P [1 + ﬁm} f(t)dt = /0 mlogl/p {1 + Bm] P f(t)dt

+oo | Vi 1/p +00 y 1/q

By virtue of Proposition 2.2 with 5 € [0,2) and the identity ¢/p = ¢ — 1, we obtain

00 1/p 00 1/
[/+ L log!/? [1 +B\/E] dt] [/+ tq/Pf‘Z(t)dt] !
o 1 0

1+t

3 1/p i +o0 1/q
= ol/p {71' — arctan [\/4—7@] } arctan'/? [\/m] [/0 tq_lfq(t)dt} :

/;OO log!/? [1 + B\/z] f(t)dt

So we have

14t
1 6 1/p 1 6 400 1 1/q
< 2YP {7 —arctan | ——— arctan /P | —— / 9 F9(t dt} .
= || e
This concludes the proof of Proposition 3.2. O
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As an example, if we take 3 = 1, using the identity arctan[1/y/3] = 7/6, then we have

+o0 Vi 51/p2/p 400 1/q
1/p < q-1 rq
/0 log [1 + T t] ft)dt < Si/r {/0 7 f (t)dt} .

Another weighted logarithmic Holder-type integral inequality is explored below. It uses mainly

Proposition 2.4.

Proposition 3.3. Letp > 1, g =p/(p—1), v € [0,4) and f : (0,+00) — (0,4+00) be a function such
that f0+°o t1=1fa(t)dt < +o00. Then we have

+00 1)2 +o0 1/q
/O log!/? [t“((t;_ ,3>t+J F(t)dt < 4Y/? arctan?®/? [‘/4_77 [/0 tq_lfq(t)dt] .

Proof of Proposition 3.3. By means of a suitable product decomposition of the integrand with the aim

of using Proposition 2.4, followed by the Hélder integral inequality, we get

“+o0 2 —+o0 2
/ (t+1) B i / (t+1) ] /
/0 logl P [t2+(2—7)t+1} f(t)olt/0 i logl P [t2+(2—’y)t+1 t Pf(t)dt

[ il [ o]

By virtue of Proposition 2.4 and the identity ¢/p = ¢ — 1, we obtain

(] bt} [ o] ”

5 +oo 1/q oo 1/q
= 4Y/? arctan?/? {1 [—— [ / ¢! fq(t)dt] [ / 1 fq(t)dt] .
4—=~] Lo 0
So we have
+o0 2 +00 1/q
1/p (t+1) < 41/p 2/p i / a—1 rq
/0 log [tQ Ty v f(t)dt < 47/Parctan |/, tI fA(t)dt .

Thus, Proposition 3.3 is proved. O

In particular, if we take v = 1, using the identity arctan[1/v/3] = /6, then we get

+00 2 2/p +00 1/q
p | 41D T a—1 q
/0 log Lz ] EACLES vl AR O I

If we take v = 2, using the identity arctan(1) = w/4, then we obtain the following elegant inequality:
+o0 2 2/p +o0 1/q
1/p (t + 1) < T q—l q
/0 log [ e N0 A IO
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If we take v = 3, using the identity arctan[v/3] = /3, then we obtain

+00 2 1/p.2/p +o0 1/q
l/p (t + 1) 4 T q—l q
/0 log [tQ E— f(t)dt < ol ; t fA(t)dt .

Based on these results, we can think of using a mixed inequality approach. For example, in the

proposition below, we propose a mixed version of Proposition 3.3 dealing with two functions.

Proposition 3.4. Letp>1,q¢=p/(p—1), v,{ €[0,4) and f,g : (0,+00) — (0, +00) be two functions
such that f0+°o ti=Lfa(t)dt < +oo and f0+oo tP=1gP(t)dt < +o0. Then we have

400 2 2
1/p? (t+1) ] 1/2[ (t+1) ] 1/ 1/
/0 log™” L2+(2—7)t+1 g™ iy W

< AL/P* /4 g pctan?/P? [ il arctan®/?°

4-C
+o0 1/(pq) 400 1/(pq)
[ / a1 f’l(t)dt] [ / P~ gp(t)dt] .
0 0

Proof of Proposition 3.4. By means of a suitable product decomposition of the integrand with the aim
of using Proposition 3.3, followed by the Hélder integral inequality, we obtain

/0+OO log' /7 [tQ m (étlv); " 1] log!/"” [tQ " ié*_?; - 1] 1PVt
— /O+°° {1og1/p [t2 T ((tztlv); +11/] f(t)}l/p )

{logl/q [tQ +((t2tlc))2t+ J g(t)} th

< {/Om log!/? [tQ +((’;+_17); - 1] f(t)dt}l/p x

{/0+oo e LZ + ((t;—lc))zt + J ! (t)dt}l/q'

Applying Proposition 3.3 independently to the functions f and g, and using the identities ¢ = p/(p — 1)
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and p = ¢q/(¢ — 1), we obtain

+o0 . 1)2 1/p
1 1/p (
(s om)
+o0 2 1/q
1/q (t + 1)
{/0 log [tQ Te-gigi) I
+o0 1/q 1/p
< {41/7’ arctan?/P [4 /ﬁ [/0 tq_lfq(t)dt] } X
C “+00 1/p l/q
4 arctan®e | [ —— [/ tp_lgp(t)dt}
4—C| Lo
_ 41/p*+1/¢? 2 | |7 2/q? ¢
4 arctan [ - arctan [ 1 C] X

+00 1/(pq) 400 1/(pq)
[ / a1t fa (t)dt] [ / tp_lgp(t)dt] .
0 0

So we have
oo t+1)2 > (t+1)>
log!/P? ( logl/a Y\ a (4 dt
/0 ©8 [t2+(2—7)t+1 O e e EAMUCUANU)
< 41/P* /2 grctan?/P’ 7| arctan?/" S X
B - 4-¢
400 1/(pq) 400 1/(pq)
[ / ta-1ya (t)dt] { / tP~1 gp(t)dt] .
0 0
Thus, the proof of Proposition 3.4 is concluded. O

As an example, if we take v = 1 and ¢ = 3, using the identities arctan[1/v/3] = 7/6 and arctan[y/3] =
7/3, then we get

t24+t4+1 2 —t+1

7[-2/122—i-2/q2 41/(12 +00 . 1/(pq) 400 . 1/(pq)
- - q—1 rq p—1_p
< 91/p?+1/q [/0 e (t)dt} [/0 P g (t)dt} .

The mixed approach used in Proposition 3.4 is elaborated upon by applying Proposition 3.3 to two

/0+OO log!/?* [W] log!/7* [W] FUP() g1 1(t)at

different parameters. With minimal effort, this approach can be adapted to the other propositions in this
section with different parameters or weight functions, leading to new mixed integral inequalities. While we
will not develop this further here, it is clear that enriching the collection of weighted Hélder-type integral

inequalities is of interest.
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Continuing in the spirit of [2, 10—12, 11|, the rest of the article is devoted to new Hardy-Hilbert-type
integral inequalities. Two forms are distinguished: the first is characterized by the omnipresence of xy in

the integral, while the second is characterized by the presence of x + y.

3.2 New Hardy-Hilbert-type integral inequalities of the first form

The proposition below presents a variant of the Hardy-Hilbert-type integral inequality of the first form

based on Proposition 2.1.

Proposition 3.5. Letp > 1, ¢q=p/(p—1), a € (=2,2), and f,g: (0,4+00) — (0,+00) be two functions
such that f0+oo 2P/2=1 P (2)dx < 400 and f0+oo Y121 g9(y)dy < +o0. Then we have

+oo  ptoo 1 .
/0 /0 1+xy+a\/@f($)g(y) xdy

4 ™ o e p/2—1 ¢p Vrr e q/2-1 q e
< ﬁ §—arctan \/ﬁ . X f (:L’)d.l‘ 0 Yy g (y)dy .

Proof of Proposition 3.5. By appropriately decomposing the integrand using the identity 1/p+1/q = 1,

and with the aim of applying Proposition 2.1 along with the Hélder integral inequality, we get

/+oo/+ool+:z:y}i-a\ﬁ ()g(y)dzdy

too phoo 2 1/(29)—1/(2p) 1/ (20)1/(2p)
-/ / 5 /(@) % o
+xy+oz1/ ] [1+33y—|—oz1/3:y]
< BYrgl/a, (1)
where
+oo  p+oo xp/ Zq —1/2
/ / 17 (@)ddy
1+ zy + a, /Ty
and

o +o0o  p+oo x—1/2yq/(2p) 9o\ dad
/0 /0 1+xy+a,/a:yg (v)dzdy.

Let us examine B and C, one after the other.

Since the integrand associated with B is non-negative, we can apply the Fubini-Tonelli integral theorem,

ensuring the exchange of the order of integration. Then, performing the change of variables u = xy with
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respect to y, using the identity p/(2¢) = (p — 1)/2, and applying Proposition 2.1, we obtain

~+o0 /(20) +o0 y71/2
B = p/(2q) £p
/0 v fi(z) /0 14+ zy + a,/xydy de
+00 +oo —1/2
:/ 2P/ CD=1/2 7 () [/ (zy)"" xdy] da
0 0

1+ 2y + a/zy

u—1/2

:/+ooxp/2_1fp(x) /+OO ——————du| dx
0 0 1+'U/+Oé\/ﬂ

Foo 4 T a
— /2—1 Z_ -
= /0 aP/#7 P (x) x Ny { 5 arctan [\/4—7042] } dx
4 m

For the term C', we proceed similarly, using the change of variables v = xy with respect to x, as follows:

40 400 .73_1/2

C= y?/ P g (y) / x| dy
0 0
+oo

d
1+2y + ayy
+o0 zy)—1/2
_/0 Y1/ CP)=1/2ga () [/0 (zy) ydm] dy

1+ 2y + a/xy
-1/2

+oo -1 +oo v
_ q/2-1 q
/0 Yy w) /0 T Torayoll|

teo 4 T a
_ a/2—1 q L _
foww m{z et [m]}d‘y
= 2T arctan | 2 / +Oo Y2 g1(y)dy. (3)
V4 —a? |2 V4 — o2 0

Using Equations (1), (2), and (3), together with the identity 1/p 4+ 1/q = 1, we obtain

+oo +o00 1
B R S | I
+oo 1/q
) o

S e [l
= ——— < — —arctan | ——
4—a2 |2 4—a?

+o00 1/p +o0 1/q
[ / P! 2‘11’”(%)6196] [ / y? 2‘19q(y)dy] :
0 0
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This ends the proof of Proposition 3.5. U

In particular, if we take a = 0, then we directly have

400  p4oo 1 400 1/p too 1/q
j2—1 /2-1
/0 /0 1+ xyf(w)g(y)d:ndy = [/0 zP fp(x)d$] [/0 y? 91 (y)dy .

This is a well-known product variant of the Hardy-Hilbert integral inequality, with 7 as the optimal

constant factor.

More interestingly, if we take o = 1, using the identity arctan[1/v/3] = 7/6, then we get

+oo +o00 1
/0 /0 mf (z)g(y)dzdy

Ar +00 21 1/p +o00 j2-1 1/q
< — P/ fP(x2)dx / y? d ,
3v3 [/0 f(@) ] [ 0 g(w)dy

where 47 /[3v/3] ~ 2.418399.

The proposition below presents our first logarithmic Hardy-Hilbert-type integral inequality of the first

form. It is mainly based on Proposition 2.2.

Proposition 3.6. Letp>1,q=p/(p—1), B €(0,2), and f,g: (0,+00) — (0,+00) be two functions
such that f0+°° P~ fP(x)dr < +oo and fOJrOO y?1g(y)dy < +oo. Then we have

/0+oo /0+°° log {1 + 51\_/1_?11} f(x)g(y)dzdy

<2 {77 — arctan

[ / +°° xplfp<x>dx] " [ / gy >dy} "

Proof of Proposition 3.6. By decomposing the integrand suitably using the identity 1/p + 1/q = 1,
and applying Proposition 2.2 along with the Holder integral inequality, we obtain

/+oo /+oo on [1 R ] f@)g(y)dedy
/+oo /+°° Vay~1/p 1Og1/P [1+5 Vo ] f@)

142y

x g~V ayl/P1pgl/a [1 + Bﬁ] 9(y)dxdy
14+ zy

< DY/rgl/a, (4)
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where
400 400 oy
D = / / 2P/~ og [1 + Bscy] fP(z)dzdy
0 0 I+azy
and

+oo +00 ey
E= / / 2 y?/P log [1 +4 i } 91 (y)dzdy.
0 0 1+ xy

Let us study D and E, one after the other.

Since the integrand associated with D is non-negative, we can apply the Fubini-Tonelli integral theorem,
ensuring the exchange of the order of integration. This, followed by the change of variables u = xy with

respect to y, the identity p/qg = p — 1 and the application of Proposition 2.2, gives

+o0o +ool \/@
_ / -
D_/O qufp(x){/o ylog[1+ﬁl+xy]dy}dx

_ /Jrooxp/qu(x) {/Jroo ilog [1 + 8 vy ] a:dy} dx
0 0 zy Yy

+oo +oo
— /o :np_lfp(:x) {/0 %log [1 + 61\—/51;] du} dx

= /OJFOO PP (z) x 2 {ﬂ — arctan \/46_7] } arctan [\/45_752] dz

= 2¢m — arctan _B_ arctan SR Y 2P~ fP(z)da (5)
" V4 — 32 V4 =521 Jo .

For the term E, we proceed in a similar way but with the change of variables v = zy with respect to

x, as follows:

1+«
+0o0
o[ el )
+o0 oo q
— /0 YT gl (y) {/O ;log {1 + Bl\ﬁ)} dv} dy
= /+oo yqflgq(y) X 2< m — arctan L arctan L dy
0 Vi-p? Vi-p?

=2 —rtnL rtnB/Jroo =1g4(y)d (6)
= T — arcta e arcta %4_52 ; yr g\y)ay.
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By virtue of Equations (4), (5) and (6), and the identity 1/p + 1/¢ = 1, we obtain

/0+oo /0+O° log [1 + ﬁl\/fgy} f(z)g(y)dxdy

+
o 1/p
< [2 {7r — arctan 45—52] } arctan [\/46—752] /0+ l‘p_lfp(x)dm] X
8 g ] e e
[2 {77 — arctan [\/m] } arctan [\/4—7/82] /0 yqlgq(y)dy]

= 2<¢ ™ — arctan L arctan b X
{r - [ o |
[/OJroo xplfp(l,)dx:| 1/p |:/0+oo yqlgq(y)dy:| 1/q ‘

This concludes the proof of Proposition 3.6. U

As a special example, if we take 3 = 1, using the identity arctan[1/v/3] = 7/6, then we get

+oo  p+o00 \/@
/0 /0 log [1 + 14‘173/} f(z)g(y)dzdy
+o00

2 1/p +o0 1/q
§518[/0 x”lfp(fc)dfc] UO y"lgq(y)dy] :

where 572 /18 ~ 2.741556.

The proposition below introduces another logarithmic Hardy-Hilbert-type integral inequality of the
first form. It is derived mainly from Proposition 2.4.

Proposition 3.7. Letp>1, q=p/(p—1), v € (0,4), and f,g: (0,+00) — (0,+00) be two functions
such that f0+°o 2P~ fP(x)dr < +oo0 and f0+oo y?1g(y)dy < +o0. Then we have

[ e[ D swatwanay

<4 2| [ T o1 RN v
< 4arctan g 2P~ fP(z)dx Yy g (y)dy :
-7 0 0

Proof of Proposition 3.7. Using the identity 1/p 4+ 1/q = 1 to decompose the integrand, and applying
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Proposition 2.4 along with the Holder integral inequality, we obtain

[ v e gty
:/+°°/ xl/qy—l/plogl/p[ (m 1y }f(x)
0 0

22y 4+ (2 —y)zy + 1

2
~1/q,1/p |pel/a (zy +1) dad
x z~ /1y /P log [x2y2+(2—7):vy+1 9(y)dzdy

< Fi/rgl/a, (7)

where

+o0o +oo (xy+1)2
F= p/a,~1] P(x)dxd
/0 /0 yos [w2y2+(2—7)wy+1} f(@)dedy

and

+o0o —+o00 +1)2
G = —1,a/p] (y } 9(y)dzdy.
/ /0 Y Og[w2y2+(2—’y)xy+1 g"(y)dwdy

Let us examine F' and G, one after the other.

Since the integrand associated with F'is non-negative, we can apply the Fubini-Tonelli integral theorem,
which ensures the exchange of the order of integration. Following this, by performing the change of variables

u = xy with respect to y, using the identity p/q = p — 1, and applying Proposition 2.4, we get

e [ [ et o)

_ /0+°<> /4 () { /0+°° mly log [$2y2 ﬁgf%y - J xdy} dz

- [Tt { [ L [ 1))2 ] o} o

_/+°°xp 14P(2) x 4 arctan? [\/4—] da

= 4 arctan® [m / PP (2)dx. (8)

For the term GG, we proceed in a similar manner, but with the change of variables v = xy with respect
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to z, as follows:

+00 1 (:U 4 )2
q/p < Y
G = / {/ xlog [x2y2+(2— )xy+1] dx}dy
—+00 1 (l‘ + 1)2
= y2/P g =1 Y d }d
/0 (y){/o wy Lzy2+(2—v)xy+1]y e
+o0o +o0o 1 (U + 1)2
— q—1 _gq =
/0 s (y){/o s %8 [v2+(2—v)v+1] dv} dy
oo 1 i
_ a—
—/ ¥ 1g%(y) x 4 arctan® [1/4 5 dy
= 4arctan® [1 [ —— - / ¥ g% (y)dy. 9)

Based on Equations (7), (8) and (9), and the identity 1/p + 1/q = 1, we obtain

2?2y + (2—vy)zy + 1

oo 1/
< {4arctan2 [1 /ﬁ /+ xplfp(x)d:z} ’ X
00 1/
{4arctan [\/:] /+ -1y dy} '
1/ 00 1/
= 4 arctan® {\/:} [/0 P~ 1fp( )dﬁU] ’ [/(: yq_lgq@)dy] q-

Thus, Proposition 3.7 is proved. U

As a special example, if we take v = 1, using the identity arctan[1/v/3] = 7/6, then we get

| - [ e T L2yxy++x;)+ J Hatuydady
2

<7 UO L )dx]l/p [/0+<>qu Lgi(y )dyr/q,

where 72/9 ~ 1.09662.

We highlight the elegant simplicity and originality of this logarithmic-type integral inequality, which

features a constant factor dependent on .

The rest of the article is devoted to new Hardy-Hilbert-type integral inequalities of the second form,
i.e., those dealing with x 4+ y rather than primarily zy. These forms of inequality are more closely related

to the original Hardy-Hilbert integral inequality.
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3.3 New Hardy-Hilbert-type integral inequalities of the second form

The proposition below presents our first Hardy-Hilbert-type integral inequality of the second form, with

Proposition 2.1 forming the core of the proof.

Proposition 3.8. Letp > 1, ¢=p/(p—1), a € (=2,2), and f,g: (0,4+00) — (0,+00) be two functions
such that f0+oo 2P/2=1 fP(2)dx < 400 and f0+oo Y121 g9 (y)dy < +o0. Then we have

+0oo +oo 1
/0 /o Tyt aymy D9dedy

400 1/p +0c0
e b H T A N VAT

1/q

Proof of Proposition 3.8. By decomposing the integrand suitably using the identity 1/p+1/¢ = 1 and
applying Proposition 2.1 along with the Holder integral inequality, we obtain

+oo +o0 1 drd
/0 /0 Wf(ﬂf)g(y) ray

+00  ptoo $1/(2q)y71/(2p) xfl/(Zq)yl/@p)

- / / 7 (@) % 1779()dzdy

o Jo o [z+y+a/Tyl [z +y+a/zy]

< HY/?pt/a (10)

where
oo o0 1p/(20)y-1/2
H= / / =7 fP(z)dady
0 0o THy+o/ry

and

+o00 +o00 x—1/2yq/(2p)
I = / / ————g¢%(y)dxdy.
0 0 T+ y+a /Ty

Let us study H and I, one after the other.

Since the integrand associated with H is non-negative, we can apply the Fubini-Tonelli integral theorem,

which justifies the exchange of the order of integration. Then, performing the change of variables u = y/x
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with respect to y, using the identity p/(2q) = (p — 1)/2, and applying Proposition 2.1, we obtain

—-1/2

+oo +o0
H— p/(29) £p / Y dul d
| f<x>[0 Ty
:/+Ooxp/(2q)—1/2fp($) /+oo (y/z) 12 % ldy da
0 o 1+/z)+ayy/z =

+oo 21 +oo w—1/2
_ p/2—1 ¢p
/0 ) /0 T ut oyl

oo _ 4 u a
_/0 zP/? 1fp(ac)><m{2—arctan |:\/4_7a2:|}d1‘

- wi*a {;r - arctan L/ﬁﬁ] } /om 2?7 () da. (11)

For the term I, we proceed in a similar manner, making the change of variables v = z/y with respect
to x, as follows:

dx

400 +oo $—1/2
I= [ eng) | [ o] dy
0 0 T+ Y+ o /Ty

~+o0 +o00 ($/y)—1/2 1
_ yd/(2P)=1/2 ga / x —dz| dy
/0 ) o x/y+l+ay/z/y Y

400 a1 +o0 p—1/2
= 1/==" g1 ——dv| d
/0 y 9'(v) /0 1+v+ayv v

—+00 4 T
= 42100y x ——— 4~ _ arctan
/0 v X s {2

s
B \/A% {g - aretan M%} } /;OO Y2 (y)dy. (12)

Based on Equations (10), (11) and (12), and the identity 1/p + 1/g = 1, we obtain

+oo +o00 1

/0 /0 Wf(fﬁ)g(y)dxdy

<[t (5w [} [ o]
+oo 1/q

[t (5[]} [ o]

S e [l
= ——— < — —arctan | ——
4—a2 |2 4—a?

+o00 1/p +o0 1/q
[ / P! 2‘Uf”’(:v)d%] [ / y? 2‘19q(y)dy] :
0 0
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This concludes the proof of Proposition 3.8. U

In particular, if we take a = 0, then we directly have

+o0 +o00 +o0 21 1/p +o00 a1 1/q
p/<—1 rp q
/ / @)l dady < = [/0 P21y (x)dm} [/0 G )dy| .

This is a well-known variant of the Hardy-Hilbert integral inequality, with 7 as the optimal constant factor.

More interestingly, if we take o = 1, using the identity arctan[1/+/3] = 7/6, then we get

“+oo +o00 1
/0 /o mf@)g(y)dxdy

Ar 400 /p 1 ptoo 1/q
il /2—1 q/2—1
< [ [ fp<:c>dx] [ |t

where 47 /[3v/3] ~ 2.418399.

Thus, Proposition 3.8 extends the scope of the Hardy-Hilbert integral inequality through the

introduction of the parameter c.

The proposition below presents our first logarithmic Hardy-Hilbert-type integral inequality of the

second form. The proof relies mainly on Proposition 2.2.

Proposition 3.9. Letp>1,q=p/(p—1), B €(0,2), and f,g: (0,+00) — (0,+00) be two functions
such that f0+°o P~ fP(x)dr < +oo and fOJrOO Yy 1g%(y)dy < +oo. Then we have

/0+oo /0+°° log {1 + ﬁﬂ] Fl2)g(y)dzdy

<2 {T{' — arctan

e [a]

[ / +°° xplf%:)dx] " [ / gy >dy} "

Proof of Proposition 3.9. Using the identity 1/p + 1/¢ = 1 to decompose suitably the integrand, and
with the aim of applying Proposition 2.2 together with the Holder integral inequality, we obtain

/+oo /+°° log [1+ﬁ\/@} f(z)g(y)dzdy
/+oo /+°° Vay=1/p1og1/p [1 + B \ﬁ] f(z)

ty
w &~ Yyl ogl/a [1 + 55} 9(y)dxdy

< JYrgi/a (13)
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where

+oo +00 /vy
= / / 2P/ 1y~ 1og 14— il fP(z)dzdy
0 0

T+y]

and

+oo +oo r eyl
K= / / z yPlog |1+ Bﬂ g9 (y)dxdy.
0 0 L T +y]

Let us examine J and K, one after the other.

Since the integrand associated with J is non-negative, we can apply the Fubini-Tonelli integral theorem
to justify the exchange of the order of integration. Then, performing the change of variables u = y/x with

respect to y, using the identity p/q = p — 1, and applying Proposition 2.2, we get
toeo oo VT
J:/ 2P/ fP () {/ —log [1+5y] dy} dx
0 o Y Tty

:/+oo$p/qu($) {/+oox10g 148 (y/z) 1dy} dx
0 0 Yy x

y/x+1

+oo +oo
:/0 2P P (2) {/0 %bg [1 +61*fu] du} dx

= /O+°° PP (z) x 2 {7r — arctan \/45—752] } arctan [\/4/6;752] dx

=24 7 — arctan s arctan _s /+00 PP (x)dx (14)
" Va—p? Va—p82| Jo '

For the term K, we proceed in a similar manner, considering the change of variables v = x/y with

respect to x, as follows:

K= /m a/p 4 y{/ 1log[1+ﬁ\/@}daz}dy

Vefy |1
/0 { oy 41 dm} dy
+ 1 ﬁ
/0 { ;10g {1—1—51_’_1)} dv}dy
_/+OO =1g4(y) x 2{ 7 — arctan £ arctan _f d
At Jio e Ji—p |
+o0
=2 {71' — arctan [\/K;ﬁ?] } arctan [\/46_752] /0 yi gl (y)dy. (15)
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It follows from Equations (13), (14) and (15), and the identity 1/p + 1/q = 1, that

+oo +oo \/@]
/0 /0 log [1 + ﬂx ey f(2)g(y)dzdy
1/p

< |24 7 — arctan _f arctan b /+°° 2Pt fP(x)da X

- V4 — B2 Va=p521Jo
+o0 1/q

[2 {71 — arctan [\/élﬂ—;@] } arctan [\/4’6;752] /0 yQ1g‘1(y)d?J]

= 2< 7 — arctan L arctan L X
(- ] oo )
[ /0 +OO mp_lfp(w)dm} v [ /0 m yq_lg"(y)dy} v :

Thus, Proposition 3.9 is proved. (|

As a special example, if we take 3 = 1, using the identity arctan[1/y/3] = /6, then we get

/O+oo /0+°° log [1 + x\/ﬁ] f(z)g(y)dzdy
+o0

ﬁ el ]1/1’[ +00 1 q ]l/q
<3 [/0 o7 fP () dx /0 v gt (y)dy|

where 572 /18 ~ 2.741556.

The proposition below introduces another logarithmic Hardy-Hilbert-type integral inequality of the
second form. It is derived mainly from Proposition 2.4.

Proposition 3.10. Letp > 1,g=p/(p—1), v € (0,4), and f,g : (0,+00) — (0, +00) be two functions
such that f0+°o 2P~ fP(z)dw < +oo and f0+oo y?1g9(y)dy < +o0o. Then we have

/0+°° /0+<>° log Lﬂ n ((2$—+vg§fy - yz] ooty

<4 2| [ T ol T v
< 4 arctan — P fP(x)dx yI g (y)dy .
Y 0 0

Proof of Proposition 3.10. By means of a suitable product decomposition of the integrand using the

identity 1/p + 1/q = 1, and with the aim of applying Proposition 2.4 together with the Holder integral
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inequality, we obtain

[ e = y)2 J sty

2 =)y +y?
—+o00 —+o00 2
_ 1/q —l/pl 1/p (JI—F y) :|
/0 /0 vy e [w2+(2—7)xy+y2 i)
2
~1/q,1/ppel/a (z+y) dad
x z~ /1y /P log [x2+(2_7)$y+y2 9(y)dzdy
< LYrprt/a (16)
where
+o00 +oo (ac—i—y)2
L= play=11 [ ] P(x)dzd
/0 /0 YR 2 e ey + 2 f? (@)dady
and

“+o00o +oo ($+y)2
M= —1,4/p] 1(y)dxdy.
/0 /0 vy Og[w2+(2—v)wy+y2]g(y)wy

Let us study L and M, one after the other.

Since the integrand associated with L is non-negative, we can apply the Fubini-Tonelli integral theorem
to justify the exchange of the order of integration. This, followed by the change of variables u = y/x with
respect to y, the identity p/q¢ = p — 1, and the application of Proposition 2.4, yields

e [ e

= [ s e ) 2

_ /O%O LR () {/Om %log [uQ Jét 3)2 - 1] du} dz

= /0 = P71 fP(x) x 4 arctan’ [m dzx

= 4arctan’ [m /Om 2P~ P (2)da. (17)

For the term M, we proceed in a similar manner, but with the change of variables v = x/y with respect

to x, as follows:
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e[ [ o

= [T (y){/o s | ) )
O e

:/myq 149(y) x 4 arctan® [m dy

= 4 arctan? [m / Yy L g (y)dy. (18)

Combining Equations (16), (17) and (18), and usmg the identity 1/p + 1/q = 1, we obtain

[

< {4arctan2 [m / T fp@)dx}l/p «
e

U e

This concludes the proof of Proposition 3.10. O

As a special example, if we take v = 1, using the identity arctan[1//3] = 7/6, then we get

[ oG] rwatmasay
2

<[ T ere] " [l "

This is a novel logarithmic HardyaHilbert integral inequality. Once again, we emphasize the elegant

where 72/9 ~ 1.096622.

simplicity and originality of this inequality, which includes a constant factor dependent on 7.

4 Conclusion

This article introduced new integral formulas, including some of the logarithmic type. Notably, these

formulas are not listed in the reference book [1]. They are characterized by their simplicity and tractability.

Earthline J. Math. Sci. Vol. 15 No. 5 (2025), 685-715



714 Christophe Chesneau

Based on this, we have developed new weighted Holder-type and Hardy-Hilbert-type integral inequalities
that differ significantly from existing results in terms of both form and structure. In particular, they
offer greater flexibility by including an adjustable parameter. With this new material, we complete the

collection of the logarithmic Hardy-Hilbert-type integral inequalities established in |2, 10-12, 11].

There are several possible directions for future research. An obvious extension would be to explore
multidimensional analogues of these inequalities. Another approach would be to apply the new inequalities
to problems in areas such as harmonic analysis, information theory, and mathematical physics. It would
also be interesting to study optimality conditions and sharpen the involved constants. Finally, integrating
these results into the framework of functional spaces, such as Orlicz or Lorentz spaces, could lead to a

deeper understanding and wider applications.
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