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Abstract

In this paper we introduce the notion of an interpolative Berinde weak operator in partial metric
spaces. Additionally, we give an existence theorem for such operators in partial metric spaces. Finally,
in support of the existence theorem, we provide an example.

1 Introduction and Preliminaries

Theorem 1.1. [1] Let (X, d) be a metric space. Suppose T : X 7→ X satisfies

d(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X and k ∈ [0, 1). Then T has a unique fixed point in X.

Theorem 1.2. [2] Let (X, d) be a metric space. Suppose T : X 7→ X satisfies

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)]

for all x, y ∈ X and k ∈ [0, 12). Then T has a unique fixed point in X.

Theorem 1.3. [3] Let (X, d) be a metric space. Suppose T : X 7→ X is an interpolative Kannan type
contraction, that is, there are constants λ ∈ [0, 1) and α ∈ (0, 1) such that

d(Tx, Ty) ≤ λd(x, Tx)αd(y, Ty)1−α

for all x, y ∈ X\Fix(T ). Then T has a unique fixed point in X.

Theorem 1.4. ( [4]- [8]) Let (X, d) be a metric space. Suppose T : X 7→ X is a Reich-Rus-Ciric
contraction, that is, there exists λ ∈ [0, 13) such that

d(Tx, Ty) ≤ λ[d(x, y) + d(x, Tx) + d(y, Ty)]

for all x, y ∈ X. Then T has a unique fixed point in X.
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From now on we review some basics in partial metric spaces.

Definition 1.5. [9] Let X be a nonempty set. A function p : X × X 7→ [0,∞) is said to be a partial
metric if the following conditions hold for each x, y, z ∈ X

(a) x = y ⇔ p(x, x) = p(y, y) = p(x, y);

(b) p(x, x) ≤ p(x, y);

(c) p(x, y) = p(y, x);

(d) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

In this case, (X, p) is said to be a partial metric space

Example 1.6. [10] Let (X, p) be a partial metric space. The function ρp : X ×X 7→ [0,∞) defined as

ρp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a standard metric on X.

Definition 1.7. ( [9], [11]- [20]) Let (X, p) be a partial metric space. We say that

(a) A sequence {xn} converges to a limit x, if p(x, x) = limn→∞ p(x, xn).

(b) A sequence {xn} is fundamental or Cauchy if limn,m→∞ p(xm, xn) exists and is finite.

(c) A partial metric space (X, p) is complete if each fundamental sequence {xn} converges to a point
x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

(d) A mapping F : X 7→ X is continuous at a point x0 ∈ X, if for each ε > 0, there exists δ > 0 such
that F (Bp(x0; δ)) ⊆ Bp(F (x0), ε).

Lemma 1.8. [9] Let p be a partial metric on a nonempty set X, and ρp be the corresponding standard
metric on the same set X.

(a) A sequence {xn} is fundamental in (X, p) if and only if it is a fundamental sequence in (X, ρp).

(b) A partial metric space (X, p) is complete if and only if the corresponding standard metric space
(X, ρp) is complete. Moreover,

lim
n→∞

ρp(x, xn) = 0⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm).
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(c) If xn → y as n→∞ in a partial metric space (X, p) with p(y, y) = 0, then we have

lim
n→∞

p(xn, z) = p(y, z) for every z ∈ X.

Definition 1.9. [21] Let (X, d) be a metric space. We say T : X 7→ X is an interpolative Berinde weak
operator if it satisfies

d(Tx, Ty) ≤ λd(x, y)αd(x, Tx)1−α

where λ ∈ [0, 1) and α ∈ (0, 1), for all x, y ∈ X, x, y /∈ Fix(T ).

Alternatively, the interpolative Berinde weak operator is given as follows

Definition 1.10. [21] Let (X, d) be a metric space. We say T : X 7→ X is an interpolative Berinde weak
operator if it satisfies

d(Tx, Ty) ≤ λd(x, y)
1
2d(x, Tx)

1
2

where λ ∈ [0, 1), for all x, y ∈ X, x, y /∈ Fix(T ).

Theorem 1.11. [21] Let (X, d) be a metric space. Suppose T : X 7→ X is an interpolative Berinde weak
operator. If (X, d) is complete, then the fixed point of T exists.

2 Main Result

Definition 2.1. Let (X, p) be a partial metric space. We say T : X 7→ X is an interpolative Berinde weak
operator if it satisfies

p(Tx, Ty) ≤ λp(x, y)αp(x, Tx)1−α

where λ ∈ [0, 1) and α ∈ (0, 1), for all x, y ∈ X, x, y /∈ Fix(T ).

Theorem 2.2. Let (X, p) be a partial metric space. Suppose T : X 7→ X is an interpolative Berinde weak
operator, then T has a fixed point in X.

Proof. Let x0 ∈ X. Define the sequence {xn} by xn = Tn(x0) for each positive integer n. If there exists
n0 such that xn0 = xn0+1, then xn0 is a fixed point of T , and the proof is finished. From now on we assume
that xn 6= xn+1 for each n ≥ 0. From Definition 2.1, observe we have

p(xn+1, xn) = p(Txn, Txn−1)

≤ λp(xn, xn−1)αp(xn, Txn)1−α

= λp(xn, xn−1)
αp(xn, xn+1)

1−α.
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From the above inequality, we deduce that

p(xn+1, xn)
α ≤ λp(xn, xn−1)α.

Thus, it follows that {p(xn−1, xn)} is a non-increasing sequence with non-negative terms. Thus, there is
a non-negative constant l such that limn→∞ p(xn−1, xn) = l. We claim that l = 0. Since p(xn+1, xn)

α ≤
λp(xn, xn−1)

α, we dedeuce that

p(xn, xn+1) ≤ λp(xn−1, xn) ≤ λnp(x0, x1).

Since λ < 1, if we take limits as n → ∞ in the above inequality, we deduce that l = 0 Now we show
that {xn} is a fundamental (Cauchy) sequence. Since p(xn, xn+1) ≤ λnp(x0, x1), then using the triangular
inequality we deduce the following

p(xn, xn+r) ≤ p(xn, xn+1) + · · ·+ p(xn+r−1, xn+r)

≤ λnp(x0, x1) + · · ·+ λn+r−1p(x0, x1)

≤ λn

1− λ
p(x0, x1).

If we take limits in the above inequality as n → ∞, we conclude that {xn} is a fundamental sequence in
(X, p). By Lemma 1.8, {xn} is also Cauchy in (X, ρp). Since (X, p) is complete, (X, ρp) is also complete.
Hence there is x ∈ X such that

p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm) = 0

which implies that
lim
n→∞

ρp(x, xn) = 0.

Now we show that x is a fixed point of T . For this, assume that x 6= Tx, so p(x, Tx) > 0. Since xn 6= Txn

for each n ≥ 0, from Definition 2.1, we deduce the following

p(xn+1, Tx) = p(Txn, Tx)

≤ λp(xn, x)αp(xn, Txn)1−α

= λp(xn, x)
αp(xn, xn+1)

1−α.

Now taking limits in the above inequality as n→∞, we deduce that p(x, Tx) = 0, so x = Tx, which is a
contradiction.Thus, x = Tx, and the proof is finished.

Example 2.3. Let X = {1, 3, 4, 7} be a set endowed with the classical partial metric p(x, y) = max{x, y},
that is,
p(1, 1) = 1, p(1, 3) = 3, p(1, 4) = 4, p(1, 7) = 7, p(3, 1) = 3, p(3, 3) = 3, p(3, 4) = 4, p(3, 7) = 7,
p(4, 1) = 4, p(4, 3) = 4, p(4, 4) = 4, p(4, 7) = 7, p(7, 1) = 7, p(7, 3) = 7, p(7, 4) = 7, p(7, 7) = 7.
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We define a self mapping T on X by T (1) = 1, T (3) = 3, T (4) = 1, T (7) = 3.

Let α = 1
2 and λ = 7

10 . Let x, y ∈ X\Fix(T ), then (x, y) ∈ {(4, 7), (7, 4), (4, 4), (7, 7)}. Without loss of
generality, we have

Case 1: x=y=4

1 = p(1, 1) = p(T4, T4) <
28

10
=

7

10
p(4, 4)

1
2 p(4, T4)

1
2 .

Case 2: x=y=7

3 = p(3, 3) = p(T7, T7) <
49

10
=

7

10
p(7, 7)

1
2 p(7, T7)

1
2 .

Case 3: x=4 and y=7

3 = p(1, 3) = p(T4, T7) <
7

10
p(4, 7)

1
2 p(4, T4)

1
2 ≈ 3.704.

Thus the self-mapping T is an interpolative Berinde weak contraction, and 1, 3 are the desired fixed points.
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