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Abstract

We study a subfamily of bi-univalent and regular functions in the open unit disk subordinate to
Gegenbauer polynomials. For functions in the defined subfamily, we derive initial coefficients bounds.
Additionally, the Fekete-Szegö problem is handled for the elements of the defined subfamily. We also
discuss relevant connections to previous findings and several fresh outcomes are shown to follow.

1 Preliminaries

A productive area of mathematics within complex analysis is Geometric Function Theory (GFT). In recent
years, this sub-branch has succeeded in drawing researchers’ attention. let U = {ζ ∈ C : |ζ| < 1}, where C
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is the complex plane, be the open unit disc. The class of regular functions φ in U is identified by A and
elements of A are of the form

φ(ς) = ς + d2ς
2 + d3ς

3 + · · · = ς +

∞∑
j=2

djς
j , ς ∈ U, (1.1)

and let S = {φ ∈ A : φ is univalent in U}. In [2], Biebereach conjectured that |dj | ≤ j, j ≥ 2 for every
function φ ∈ S. Numerous new subclasses of S were defined to settle the Biebereach conjecture and a
number of results were established. Reserchers worked on this conjecture’s proof for many years and finally,
Luis De Branges solved this conjecture for every j ≥ 2 in [7]. Another problem in GFT is Fekete-Szegö
functional |d3 − ξd22|, ξ ∈ R, for every function φ ∈ S [14]. Numerous papers on the aforementioned
problem for functions that belong to subclasses of S have been published by well-known researchers. One
of the remarkable subclass of S is bi-univalent function class σ. In his work [17], Levin introduced the
idea of σ of bi-univalent functions. Let φ represents these analytic functions, where φ and φ−1 = ψ are
both univalent in U. The renowned Koebe theorem (see [9]) states that, each function φ ∈ S of the form
(1.1) has an inverse given by

φ−1(w) = w − d2w2 + (2d22 − d3)w3 − (5d32 − 5d2d3 + d4)w
4 + · · · = ψ(w) (1.2)

satisfying ς = ψ(φ(ς)) and w = φ(ψ(w)), |w| < r0(φ), 1/4 ≤ r0(φ), ς, w ∈ U. The class σ is not an
empty set since the functions 1

2 log
(
1+ς
1−ς

)
, − log(1 − ς) and ς

1−ς are functions in the σ family. However,

ς − ς2

2 ,
ς

1−ς2 , and the Koebe function ς
(1−ς)2 are not elements of σ, even though they are in S. For a

succinct examination and to learn about some of the traits of the σ family, see [3, 4, 18, 33]. The article
by Srivastava and his co-authorss [23] triggered the recent surge in research on the bi-univalent function
family. Since this article brought the topic back to life, many researchers have investigated a number of
intriguing special families of σ; see [5, 6, 8, 10, 11,34] and the citation given in these papers.

In many fields, including number theory, numerical analysis, combinatorics, computer science, physics,
and engineering, special polynomials like Faber, Lucas, Chebyshev, Horadam, Bernoulli, Lucas-Lehmer,
Pell-Lucas, Fibonacci, and their generalizations are crucial. Researchers have recently focused attention
on a specific type of polynomials called Gegenbauer polynomials (GP).

Let R = (−∞,+∞) and N = {1, 2, 3, · · · }. Recently, Kiepiela et al. [16] have examined the GP Cαj (x).
It is also known as ultraspherical polynomials. They can be defined on [−1, 1] by the recurrence relation

Cαj (x) =
2x(j + α− 1)Cαj−1(x) + (j + 2α− 1)Cαj−2(x)

j
, j ∈ N\{1}, (1.3)

with

Cα0 (x) = 1 and Cα1 (x) = 2αx. (1.4)
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It is evident from (1.3) and (1.4) that

Cα2 (x) = 2α(1 + α)x2 − α. (1.5)

For α ∈ R\{0}, a generating function of the sequence Cαj (x), j ∈ N, is defined by (see [1])

Hα(x, ς) =
∞∑
j=0

Cαj (x)ς
j =

1

(1− 2xς + ς)α
. (1.6)

C
1
2
j (x): the Legendre polynomials and C1

j (x): the second kind Chebyshev polynomials, are the two cases
of Cαj (x) (see [1]).

The focus in the last two decades was on functions that belong to a specific σ subfamily and are
subordinate to known number sequences or special polynomials. Several researchers have found coefficient
estmates and Fekete-Szegö functional |d3−ξd22|, ξ ∈ R, for elements of σ subclasses that are subordinate to
number sequences or special polynomials (Refer to [12,13,15,19,20,22,24,25,27,29,31,32,36]). Researchers
have recently focused attention on interesting findings about coefficient estimates and the Fekete-Szegö
functional for elements of particular subfamilies of σ related to GP [26,30,35].

We introduce a subfamily of σ that is subordinate to a GP: Tσ(%, δ,κ), which is motivated by
the Fekete-Szegö functional on particular subfamilies of σ and the previously mentioned patterns in
coefficient-related problems.

For a1, a2 ∈ A analytic in U, a1 is subordinate to a2, if there is a Schwarz function θ(ς) that is analytic
in U with θ(0) = 0 and |θ(ς)| < 1, such that a1(ς) = a2(θ(ς)), ς ∈ U [9]. This subordination is symbalized
as a1 ≺ a2 or a1(ς) ≺ a2(ς) (ς ∈ U). In case, if a2 ∈ S, then

a1(ς) ≺ a2(ς) ⇔ a1(0) = a2(0) and a1(U) ⊂ a2(U).

Definition 1.1. Let % ≥ 0, 0 < δ ≤ 1, 1
2 < x ≤ 1, and α ∈ R\{0}. If φ ∈ σ satisfies

1

2

((
(ςφ′(ς) + %ς2φ′′(ς))′

φ′(ς)

)
+

(
(ςφ′(ς) + %ς2φ′′(ς))′

φ′(ς)

) 1
δ

)
≺ Hα(x, ς), (1.7)

and
1

2

((
(wψ′(w) + %w2ψ′′(w))′

ψ′(w)

)
+

(
(wψ′(w) + %w2ψ′′(w))′

ψ′(w)

) 1
δ

)
≺ Hα(x,w), (1.8)

then we say that φ ∈ Tσ(%, δ, x), where Hα(x, ς) is as given by (1.3), ψ(w) = φ−1(w) is as in (1.2), and
ς, w ∈ U.

In Section 2, we find estimates for |d2|, |d3|, and |d3 − ξd22|, ξ ∈ R, for functions in the classes
Tσ(%, δ, x). In Section 3, a number of new findings are presented as a result, and we also talk about
pertinent connections to earlier findings
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2 Principal Findings

For any function φ ∈ Tσ(%, δ, x), we determine the coefficient-related estimates.

Theorem 2.1. If a function φ ∈ σ is a member of the family Tσ(%, δ, x), (% ≥ 0, 0 < δ ≤ 1, 12 < x ≤ 1,
and α ∈ R\{0}), then

|d2| ≤
2δ|α|x

√
2x√

|(δ + 1)2(1 + 2%)2(1− 2x2) + (2δ(δ + 1)(5%+ 1)− (δ2 + 4δ − 1)(2%+ 1)2)2αx2|
, (2.1)

|d3| ≤
(

2δαx

(δ + 1)(1 + 2%)

)2

+
2δ|α|x

3(δ + 1)(1 + 3%)
, (2.2)

and for ξ ∈ R

|d3 − ξd22| ≤


2δ|α|x

3(δ+1)(1+3%) ; |1− ξ| ≤ k
8δ2|α|2x3 |1−ξ|

|(δ+1)2(1+2%)2(1−2x2)+(2δ(δ+1)(5%+1)−(δ2+4δ−1)(2%+1)2)2αx2| ; |1− ξ| ≥ k,
(2.3)

where

k =

∣∣∣∣(δ + 1)2(1 + 2%)2(1− 2x2) + (2δ(δ + 1)(5%+ 1)− (δ2 + 4δ − 1)(2%+ 1)2)2αx2

12αδ(δ + 1)(1 + 3%)x2

∣∣∣∣ . (2.4)

Proof. Let φ ∈ Tσ(%, δ, x). Then, for two holomorphic functions M and N with M(0) = 0 = N(0),
|M(ς)| < 1, and |N(w)| < 1, ς, w ∈ U and on account of Definition 1.1 we can write

1

2

((
(ςφ′(ς) + %ς2φ′′(ς))′

φ′(ς)

)
+

(
(ςφ′(ς) + %ς2φ′′(ς))′

φ′(ς)

) 1
δ

)
= Hα(x,M(ς)), (2.5)

and
1

2

((
(wψ′(w) + %w2ψ′′(w))′

ψ′(w)

)
+

(
(wψ′(w) + %w2ψ′′(w))′

ψ′(w)

) 1
δ

)
= Hα(x,N(w)), (2.6)

A few basic mathematical methods allow us to write equations (2.5) and (2.6) as

1

2

((
(ςφ′(ς) + %ς2φ′′(ς))′

φ′(ς)

)
+

(
(ςφ′(ς) + %ς2φ′′(ς))′

φ′(ς)

) 1
δ

)
= 1 +

(
δ + 1

δ

)
(1 + 2%)d2ς

+

((
δ + 1

δ

)
(3(1 + 3%)d3 − 2(1 + 2%)d22) +

(
1− δ
δ2

)
(1 + 2%)2d22

)
ς2 + · · · (2.7)

Hα(x,M(ς)) = 1 + Cα1 (x)m1ς +
[
Cα1 (x)m2 + Cα2 (x)m

2
1

]
ς2 + ..., (2.8)

and

1

2

((
(wψ′(w) + %w2ψ′′(w))′

ψ′(w)

)
+

(
(wψ′(w) + %w2ψ′′(w))′

ψ′(w)

) 1
δ

)
= 1−

(
δ + 1

δ

)
(1 + 2%)d2w
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+

((
δ + 1

δ

)
(2(2 + 7%)d22 − 3(1 + 3%)d3) +

(
1− δ
δ2

)
(1 + 2%)2d22

)
w2 + · · · (2.9)

Hα(x,N(w)) = 1 + Cα1 (x)n1w +
[
Cα1 (x)n2 + Cα2 (x)n

2
1

]
w2 + ... (2.10)

It is known that if |M(ς)| = |m1ς + m2ς
2 + · · · | < 1, ς ∈ U and |N(ς)| = |n1w + n2w

2 + · · · | < 1, w ∈ U,
then

|mi| ≤ 1, and |ni| ≤ 1, (i ∈ N). (2.11)

By comparing the terms of the same degree in (2.7) and (2.9), we arrive at the following conclusions
due to (2.5). (

δ + 1

δ

)
(1 + 2%)d2 = Cα1 (x)m1, (2.12)(

δ + 1

δ

)
(3(1 + 3%)d3 − 2(1 + 2%)d22) +

(
1− δ
δ2

)
(1 + 2%)2d22 = Cα1 (x)m2 + Cα2 (x)m

2
1. (2.13)

Likewise, because of equality (2.6), we compare terms of the same degree in (2.8) and (2.10) to arrive at
our conclusion.

−
(
δ + 1

δ

)
(1 + 2%)d2 = Cα1 (x)n1, (2.14)

and (
δ + 1

δ

)
(2(2 + 7%)d22 − 3(1 + 3%)d3) +

(
1− δ
δ2

)
(1 + 2%)2d22 = Cα1 (x)n2 + Cα2 (x)n

2
1. (2.15)

From (2.12) and (2.14), we get
m1 = −n1, (2.16)

and

2

(
δ + 1

δ

)2

(1 + 2%)2d22 = (m2
1 + n21)(C

α
1 (x))

2. (2.17)

Addition of (2.13) and (2.15) yield((
1 + δ

δ

)
(1 + 5%) +

(
1− δ
δ2

)
(1 + 2%)2

)
2d22 = Cα1 (x)(m2 + n2) + Cα2 (x)(m

2
1 + n21). (2.18)

Replacing m2
1 + n21 from (2.17) in (2.18) we get

d22 =
δ2(Cα1 (x))

3(m2 + n2)

2(δ(δ + 1)(1 + 5%) + (1− δ)(1 + 2%)2)(Cα1 (x))
2 − (δ + 1)2(1 + 2%)2Cα2 (x)

. (2.19)

Utilizing (1.4) and (1.5) for Cα1 (x) and Cα2 (x), respectively and applying (2.11) to m2, n2 produces (2.1).

From (2.13) we subtract (2.15) to get the bound on |d3|:

d3 = d22 +
δCα1 (x)(m2 − n2)

6(δ + 1)(1 + 3%)
. (2.20)
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If we replace d22 from (2.17) in (2.20) we get

d3 =
δ2(Cα1 (x))

2(m2
1 + n22)

2(δ + 1)2(1 + 2%)2
+
δCα1 (x)(m2 − n2)

6(δ + 1)(1 + 3%)
. (2.21)

We deduce (2.2) from (2.21), utilizing (1.4) and (1.5) for Cα1 (x) and Cα2 (x), respectively and applying
(2.11) to m2, n2. Finally, we compute the bound on |d3 − ξd22| using the values of d22 and d3 from (2.19)
and (2.20), respectively. Consequently, we have

d3 − ξd22 =
|Cα1 (x)|

2

∣∣∣∣( δ

3(δ + 1)(1 + 3%)
+ V(ξ, x)

)
m2 −

(
δ

3(δ + 1)(1 + 3%)
− V(ξ, x)

)
n2

∣∣∣∣ ,
where

V(ξ, x) = δ2(Cα1 (x))
2(1− ξ)

(δ(δ + 1)(1 + 5%) + (1− δ)(1 + 2%)2)(Cα1 (x))
2 − (δ + 1)2(1 + 2%)2Cα2 (x)

.

Clearly

|d3 − ξd22| ≤


δ|Cα

1 (x)|
3(δ+1)(1+3%) ; |V(ξ, x)| ≤ δ

3(δ+1)(1+3%)

|Cα1 (x)||V(ξ, x)| ; |V(ξ, x)| ≥ δ
3(δ+1)(1+3%) .

(2.22)

We derive (2.3) from (2.22), where k is the same as in (2.4).

The following is obtained by applying ξ = 1 in Theorem 2.1:

Corollary 2.1. If a function φ ∈ σ is a member of the family Tσ(%, δ, x), (% ≥ 0, 0 < δ ≤ 1, 12 < x ≤
1, andα ∈ R\{0}), then |d3 − d22| ≤

2δ|α|x
3(δ+1)(1+3%) .

3 Specific Instances

Here are some specific instances of our theorem proved in Section 1.

Example 3.1. Letting % = 0 in the class Tσ(%, δ, x), we get a subclass Cσ(δ, x) ≡ Tσ(0, δ, x) of
functions φ ∈ σ satisfying

1

2

((
(ςφ′(ς))′

φ′(ς)

)
+

(
(ςφ′(ς))′

φ′(ς)

) 1
δ

)
≺ Hα(x, ς),

and
1

2

((
(wψ′(w))′

ψ′(w)

)
+

(
(wψ′(w))′

ψ′(w)

) 1
δ

)
≺ Hα(x,w),

where 0 < δ ≤ 1, 12 < x ≤ 1, α ∈ R\{0}, Hα(x, ς) is as given by (1.3), ψ(w) = φ−1(w) is as in (1.2), and
ς, w ∈ U. .
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Corollary 3.1. If a function φ ∈ σ is a member of the family Cσ(δ, x), then

|d2| ≤ 2δ|α|x

√
2x

|(δ + 1)2(1− 2x2) + (δ − 1)22αx2|
, |d3| ≤

(
2δαx

δ + 1

)2

+
2δ|α|x
3(δ + 1)

,

and for ξ ∈ R

|d3 − ξd22| ≤


2δ|α|x
3(δ+1) ; |1− ξ| ≤

∣∣∣ (δ+1)2(1−2x2)+(δ−1)22αx2
12αδ(δ+1)x2

∣∣∣
8δ2|α|2x3 |1−ξ|

|(δ+1)2(1−2x2)+(δ−1)22αx2| ; |1− ξ| ≥
∣∣∣ (δ+1)2(1−2x2)+(δ−1)22αx2

12αδ(δ+1)x2

∣∣∣ .
The following inequality is obtained by allowing ξ = 1 in Corollary 3.1.

Corollary 3.2. If a function φ ∈ σ is a member of the family Cσ(δ, x), then |d3 − d22| ≤
2δ|α|x
3(δ+1) .

Example 3.2. Letting δ = 1 in the class Tσ(%, δ, x), we get a subclass Fσ(%, x) ≡ Tσ(%, 1, x) of functions
φ ∈ σ satisfying

(ςφ′(ς) + %ς2φ′′(ς))′

φ′(ς)
≺ Hα(x, ς),

and
(wψ′(w) + %w2ψ′′(w))′

ψ′(w)
≺ Hα(x,w),

where % ≥ 0, 12 < x ≤ 1, α ∈ R\{0}, Hα(x, ς) is as given by (1.3), ψ(w) = φ−1(w) is as in (1.2), and
ς, w ∈ U.

Corollary 3.3. If a function φ ∈ σ is a member of the family Fσ(%, x), then

|d2| ≤ |α|x

√
2x

|(2%+ 1)2(1− 2x2) + %(1− 4%)2αx2|
, |d3| ≤

α2x2

(1 + 2%)2
+

|α|x
3(1 + 3%)

,

and

|d3 − ξd22| ≤


|α|x

3(1+3%) ; |1− ξ| ≤
∣∣∣ (2%+1)2(1−2x2)+%(1−4%)2αx2

24α(1+3%)x2

∣∣∣
2|α|2x3 |1−ξ|

|(2%+1)2(1−2x2)+%(1−4%)2αx2| ; |1− ξ| ≥
∣∣∣ (2%+1)2(1−2x2)+%(1−4%)2αx2

24α(1+3%)x2

∣∣∣ .
Remark 3.1. If % = 0 in Corollary 3.3, we obtain Theorem 3.1 and Theorem 5.1 of [1], correcting the
bound of |d2|.

Using ξ = 1 in Corollary 3.3, we obtain the inequality that follows:

Corollary 3.4. If a function φ ∈ σ is a member of the family Fσ(%, x), then |d3 − d22| ≤
|α|x

3(1+3%) .

Remark 3.2. If % = 0 in Corollary 3.4, we obtain Theorem 5.2 of [1].
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4 Conclusion

This study contains the upper bounds on |d2| and |d3| for functions that belong to the defined σ subclasses
associated with BP. Additionally, we have determined the Fekete-Szegö functional |d3 − ξd22|, ξ ∈ R, for
functions in these subfamilies. Specialization of the parameters applied to our results, as mentioned
in Section 3, produces previously unexplored new results. We conclude our study by pointing out
to interested readers that the subclass can be studied for higher order Hankel determinant problems.
Interested readers are advised to read these papers [21,28] and the related references.
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