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Abstract

Some classes of inverse quasi variational inequalities, which can be viewed as a novel important special

case of quasi variational equalities, introduced in Noor [47] in 1988, are investigated. Using various

techniques such as Wiener-Hopf equations, auxiliary principle, dynamical systems coupled with finite

difference approach we suggest and analyzed a number of new and known numerical techniques for

solving inverse quasi variational inequalities. Convergence analysis of these methods is investigated

under suitable conditions. Sensitivity analysis is also investigated. One can obtain a number of new

classes of inverse variational inequalities by interchanging the role of operators. Various special cases are

discussed as applications of the main results. Several open problems are suggested for future research.

1 Introduction

Variational inequality theory contains a wealth of new ideas and techniques. Variational inequality

theory was introduced and considered in early sixties by Lions and Stampacchia [35], can be viewed

as a novel extension and generalization of the variational principles. By variational principles, we mean

maximum and minimum problems arising in game theory, mechanics, geometrical optics, general relativity

theory, economics, transportation, differential geometry and related areas It is amazing that a wide class

of unrelated problems can be studied in the general and unified framework of variational inequalities.

Variational inequalities have been generalized and extended in several directions using novel and innovative

ideas to handle complicated and complex problems. Noor [46,47] considered two new classes of variational

inequalities involving two arbitrary operators in 1988, which are known as general variational inequalities
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and have applications in oceanography, non-positive and non symmetric differential equations theory. An

important special case of these general variational inequalities is known as inverse variational inequalities.

It has been established that the variational inequalities are equivalent to the fixed point problems

This equivalent formulations have played an important role to study the existence of the solution and to

develop efficient numerical methods for solving variational inequalities and related optimization problems.

Noor [51,54] has proposed and suggested three step forward-backward iterative methods, known as Noor

iterations, for finding the approximate solution of general variational inequalities using the technique

of updating the solution and auxiliary principle. These forward-backward splitting algorithms are

similar to those of the schemes of Glowinski and Le Tallec [21], which they suggested by using the

Lagrangian technique. Suantai et al. [83] have also considered some novel forward-backward algorithms

for optimization and their applications to compressive sensing and image inpainting. Ashish et al. [4–6],

Cho et al. [12] and Kwuni et al. [34] explored the Julia set and Mandelbrot set in Noor orbit using the

Noor (three step) iterations. It is worth mentioning that Noor iterations have influenced the research

in the fixed point theory and will continue to inspire further research in fractal geometry, chaos theory,

coding, number theory, spectral geometry, dynamical systems, complex analysis, nonlinear programming,

graphics and computer aided design. These three-step schemes are a natural generalization of the splitting

methods of Ames [3] for solving partial differential equations. Noor (three-step) iterations contain Mann

(one-step) iteration and Ishikawa (two-step) iterations as special cases. Inspired and motivated by the

usefulness and applications of the splitting three-step methods, several classes of three-step approximation

schemes for solving variational inequalities, fixed points and related problems are being investigated. It

has been established [51, 79] that Noor (Three step) iterations, perform better than the Ishikawa (two

step) iterations and one step method Mann (one step) iteration.

In various cases, the underlying set may depends upon the solution explicitly or implicity, then the

variational inequality is called the quasi-variational inequality. Bensoussan and Lions [9] studied such

type of problems in the field of impulse control.

To be more precise, for given nonlinear operators T , g : H ← H and convex valued closed convex set

Ω(µ), find µ ∈ Ω(µ) ⊆ H, such that

〈T µ, ν − g(µ)〉 ≥ 0, ∀ν ∈ Ω(µ), (1.1)

which is called the general quasi variational inequality considered by Noor [47] in 1988.

For T = I, identity operator, the problem (1.1) reduces to finding µ ∈ Ω(µ) such that

〈µ, ν − g(µ)〉 ≥ 0, ∀ν ∈ Ω(µ), (1.2)

is called the inverse quasi variational inequality, which have been used to consider a road pricing problem

in which the environment impact problem due to traffic flow is taken into account to fix the road taxes

http://www.earthlinepublishers.com



New Iterative Methods and Sensitivity Analysis for Inverse Quasi Variational Inequalities 497

and a bipartite market equilibrium problems. Also, a number of problems such as flow control problems,

transportation, telecommunication networks, dynamic power price problem and least distance problem [10]

can be studied in the unified framework of inverse variational inequalities. Ironically, all the authors and

researchers in [6, 22–27, 84, 86] have not cited the original paper on quasi variational inequalities by

Noor [47], which is unethical. They have copied and pasted all the results from various research articles

of Noor and his coauthors with minor modifications.

Noor [43, 47] proved that the quasi variational inequalities are equivalent to the implicit fixed point

problem. This equivalent formulation played an important role in developing numerical methods,

sensitivity analysis, dynamical systems and other aspects of quasi-variational inequalities. For the

applications, motivations, generalizations, extensions, dynamical systems, sensitivity analysis, numerical

methods, error bounds and related optimization programming problems, see [1, 2, 9, 11, 13, 17–21, 28–31,

33,34,37,38,41–43,45–75,77,83,85,90] and the references therein.

The Wiener-Hopf equations were introduced and studied by Shi [80] and Robinson [78]. This technique

has been used to study the existence of a solution as well as to develop various iterative methods for solving

the variational inequalities. Noor [50] have proved that quasi variational inequalities are equivalent to

the Wiener-Hopf equations. This equivalence has been used to study the existence and stability of the

solution of quasi variational inequalities.

The projected dynamical systems associated with variational inequalities were considered by Dupuis

and Nagurney [19]. The novel feature of the projected dynamical system is that the its set of stationary

points corresponds to the set of the corresponding set of the solutions of the variational inequality problem.

This dynamical system is a first order initial value problem. Consequently, equilibrium and nonlinear

problems arising in various branches in pure and applied sciences can now be studied in the setting of

dynamical systems. It has been shown [17, 19, 31, 38, 54, 64, 69, 87, 88] that the dynamical systems are

useful in developing some efficient numerical techniques for solving variational inequalities and related

optimization problems.

We would like to mention that the sensitivity analysis provides useful information for designing or

planning various equilibrium systems. Sensitivity analysis can provide new insight and stimulate new

ideas and techniques for problem solving. Dafermos [17] studied the sensitivity analysis of the variational

inequalities using the fixed point technique. This approach has strong geometrical flavour and has been

investigated for various classes of quasi variational inequalities. Also see, [50,54,62,63,73,84,86] and the

references therein.

Motivated and inspired by ongoing recent research in variational inequalities, we revisit the inverse

quasi variational inequalities, which is a special case of quasi variational inequalities involving two arbitrary

operators, introduced and studied by Noor [47] in 1988. Noor [43] established the equivalence between
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the quasi variational inequalities and fixed point problem, which has been used to consider an iterative

method for solving quasi variational inequalities. We prove that the nonlinear programming problems and

implicit second order obstacle boundary value problems can be studied via the inverse quasi variational

inequalities. Several special cases are discussed as applications of the inverse quasi variational inequalities,

discussed in Section 2. In section 3, we discuss the unique existence of the solution as well as to suggest

several inertial iterative method along with the convergence analysis. The inverse Wiener-Hopf equation

technique is used to suggest some iterative methods in Section 4. We also apply the auxiliary principle

technique involving an arbitrary operator is used to discuss some iterative schemes for solving the inverse

quasi variational inequalities in Section 5. Dynamical system approach is applied to study the stability

of the solution and to suggest some iterative methods for solving the inverse quasi variational inequalities

exploring the finite difference idea. Our results in this section can be viewed as significant refinement of

the results in [7, 18,84,86] and the references therein.

Sensitivity analysis for variational inequalities has been studied by many authors using quite different

techniques. The techniques suggested so far vary with the problem being studied. Dafermos [17] used

the equivalence between the variational inequalities and the fixed-point problem to study the sensitivity

analysis of the classical variational inequalities. This technique has been modified and extended by

many authors for studying the sensitivity analysis of various classes of quasi variational inequalities

in [50, 62, 63, 73, 75]. In Section 7, we obtain some new results for the sensitivity analysis of the inverse

quasi variational inequalities.

One of the main purposes of this paper is to demonstrate the close connection among various classes

of algorithms for the solution of the inverse quasi variational inequalities and to point out that researchers

in different field of variational inequalities and optimization have been considering parallel paths. We

would like to emphasize that the results obtained and discussed in this paper may motivate and bring a

large number of novel, innovate potential applications, extensions and interesting topics in these areas.

We have given only a brief introduction of this fast growing field. The interested reader is advised

to explore this field further and discover novel and fascinating applications of inverse quasi variational

inequalities in other areas of sciences such as machine learning, artificial intelligence, data analysis, fuzzy

systems, random stochastic, financial analysis and related other optimization problems. It is expected

the techniques and ideas of this paper may be starting point for further research.

2 Formulations and Basic Facts

Let Ω be a nonempty closed set in a real Hilbert space H. We denote by 〈·, ·〉 and ‖ · ‖ be the inner

product and norm, respectively. First of all, we recall some concepts from convex analysis [14, 15, 40],

which are needed in the derivation of the main results.
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Definition 2.1. A set Ω in H is said to be a convex set, if

µ+ λ(ν − µ) ∈ Ω, ∀µ, ν ∈ Ω, λ ∈ [0, 1].

Definition 2.2. A function Φ is said to be a convex function, if

Φ((1− λ)µ+ λν) ≤ (1− λ)Φ(µ) + λΦ(ν), ∀µ, ν ∈ Ω, λ ∈ [0, 1].

Convex functions are closely related to the integral inequalities and variational inequalities. These type

of inequalities have played crucial part in developing fields such as: numerical analysis, operations research,

transportation, financial mathematics, structural analysis, dynamical systems, sensitivity analysis and

machine learning.

If the convex function Φ is differentiable, then µ ∈ Ω is the minimum of the function Φ, if and only if,

µ ∈ Ω satisfies the inequality

〈Φ′(µ), ν − µ〉 ≥ 0, ∀ν ∈ Ω. (2.1)

The inequalities of the type (2.1) are called the variational inequalities, which were introduced and studied

by Lions and Stampacchia [35]. It is known that the problem (2.1) occurs, which may not be derivative

of the differentiable functions. These facts and observations motivated Lions and Stampacchia [35] to

consider more general variational inequalities of which (2.1) is a special case. To be more precise, for a

given nonlinear operator T : H −→ H, we consider the problem of finding µ ∈ Ω such that

〈T µ, ν − µ〉 ≥ 0, ∀ν ∈ Ω. (2.2)

which is called the variational inequality. Note that, for Φ′(µ) = T µ, problem (2.2) is exactly the problem

(2.1).

For the applications, formulation, sensitivity, dynamical systems, generalizations, and other aspects

of the variational inequalities, see [1, 9, 13, 17–21,28–31, 33, 34, 37, 38, 41–43,45–56,58–66,68–75,77, 83, 85]

and the references therein.

In many cases, the set and function may not be a convex set and convex functions. To overcome these

drawbacks, Noor [57, 58] introduced the concept of general new convex set and general convex function

with respect to an arbitrary function g. For the sake of completeness and to convey an idea of this result,

we include some details.

Definition 2.3. [57, 58] A set Ωg ⊆ H is said to be a general convex set, if there exists an arbitrary

function g : H −→ H such that

g(µ) + t(ν − g(µ)) ∈ Ωg, ∀µ, ν ∈ Ωg, t ∈ [0, 1].
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Note that every convex set is general convex set, but the converse is not true, see Noor [57, 58]. It is

worth mentioning that the general convex (g-convex) set is different than the E-convex set of Youness [89]

and various general convex set. For the applications of the general convex sets in information technology,

railway systems, computer aided design, digital vector optimization and comparison with other concepts,

see [14–16,57]. If g = I, then the general convex set Ωg is exactly the convex set Ω.

Definition 2.4. The function Φ : Ωg −→ H is said to be general convex, if there exists an arbitrary

function g, such that

Φ(g(µ) + t(ν − g(µ))) ≤ Φ(g(µ)) + t{Φ(ν − Φ(g(µ))}, ∀µ, ν ∈ Ωg, t ∈ [0, 1].

Clearly every convex function is a general convex, but the converse is not true. For the differentiable

general convex function, we have

Theorem 2.1. [57,58] Let Φ be a differentiable general convex function on the general convex set Ωg.

Then the minimum µ ∈ Ωg of the function Φ, if and only if, µ ∈ Ωg satisfies the inequality

〈Φ′(g(µ), ν − g(µ)〉 ≥ 0, ∀ν ∈ Ωg, (2.3)

where Φ′(.) is the differential of Φ at µ ∈ Ωg in the direction ν − g(µ).

Theorem 2.1 implies that general convex programming problems can be studied via the general

variational inequality(2.3).

It is known that the inequality of the type (2.3) may not arise as the optimality condition of the

differentiable functions.

Noor [58] introduced and investigated the problem of finding µ ∈ Ω ⊆ H, such that

〈T µ, ν − g(µ)〉 ≥ 0, ∀ν ∈ Ω, (2.4)

which is called the general variational inequalities. For the applications, motivations, numerical results,

dynamical systems and related optimizations, see [60, 75]. It is worth mentioning that the problem (2.3

is a special case of the of the problem (2.4).

In many applications, the convex set Ω depends upon the solution explicitly or implicitly. In such

cases, variational inequality is called the quasi variational inequality. Let Ω : H −→ H be a set-valued

mapping which, for any element µ ∈ H, associates a convex-valued and closed set Ω(µ) ⊆ H. We now

consider some new classes of general quasi variational inequalities, which include several new and known

classes of variational inequalities as special cases.

For given nonlinear operators T , g, we consider the problem of finding µ ∈ Ω(µ), such that

〈T µ, ν − g(µ)〉 ≥ 0, ∀ν ∈ Ω(µ), (2.5)

http://www.earthlinepublishers.com



New Iterative Methods and Sensitivity Analysis for Inverse Quasi Variational Inequalities 501

which is called the quasi variational inequality, introduced and studied by Noor [47] in 1988. Also by

interchanging the role of the operators T and g, the problem (2.5) is equivalent to finding µ ∈ Ω(µ), such

that

〈g(µ), ν − T (µ)〉 ≥ 0, ∀ν ∈ Ω(µ), (2.6)

Note the symmetry role played by the mappings T and g. It is clear all the results, which hold for the

problem (2.5), continue to hold for the problem (2.6) and vice versa.

If T = I, the identity operator, then the problem (2.6) reduces to finding µ ∈ Ω(µ), such that

〈µ, ν − g(µ)〉 ≥ 0, ∀ν ∈ Ω(µ), (2.7)

is called the inverse quasi variational inequality, see [7, 10,22–27,84,86] and the references therein.

For g = I, the problem (2.6) reduces to finding ν ∈ Ω(µ), such that

〈µ, ν − T (µ)〉 ≥ 0, ∀ν ∈ Ω(µ), (2.8)

which is also called the inverse quasi variational inequality. Consequently, it is evident that all the

known results for quasi variational inequalities are also valid for both types of inverse quasi variational

inequalities. This is a surprising fascinating fact.

Special Cases

We now point out some very important and interesting problems, which can be obtained as special cases

of the problem (2.7).

(I). This problem (2.5) can be viewed as a problem of finding the minimum of general convex

function [57]. Such type of problems have applications in optimization theory and imaging process in

medical sciences and earthquake.

(II). If Ω∗(µ) = {µ ∈ H : 〈µ, ν〉 ≥ 0, ∀ν ∈ Ω(µ)} is a polar (dual) cone of a convex-valued

cone Ω(µ) in H, then problem (2.7) is equivalent to finding µ ∈ H, such that

g(µ) ∈ Ω(µ), µ ∈ Ω∗(µ) and 〈µ, g(µ)〉 = 0, (2.9)

which is known as the inverse quasi complementarity problems and appears to be a new one.

For Ω(µ) = Ω, the convex set, the problem (2.9) is equivalent to finding µ ∈ H such that

g(µ) ∈ Ω, µ ∈ Ω∗ and 〈µ, g(µ)〉 = 0, (2.10)
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is called the inverse nonlinear complementarity problem [46]. Obviously inverse quasi complementarity

problems include the inverse complementarity problems and linear complementarity problems. The

complementarity problems were introduced and studied by Cottle et al. [13], Lemke [36], Noor [46,48,54]

and Noor et al. [61,66,73,76] in game theory, management sciences and quadratic programming as special

cases. This inter relations among these problems have played a major role in developing numerical results

for these problems and their applications.

(III). If Ω(µ) = Ω, where Ω is a convex set in H, then problem (2.7) reduces to finding µ ∈ Ω such that

〈µ, ν − g(µ)〉 ≥ 0, ∀ν ∈ Ω, (2.11)

is known as the inverse variational inequality, which is mainly due to Noor [47] by taking T = I, the

identity operator. Noor et al. [67] have considered some multi step iterative methods for solving inverse

variational inequalities (2.11).

Remark 2.1. It is worth mentioning that for appropriate and suitable choices of the operators T , g,
set-valued convex set Ω(µ) and the spaces, one can obtain several classes of inverse variational inequalities,

inverse complementarity problems and optimization problems as special cases of the inverse quasi

variational inequalities (2.7). This shows that the problem (2.5) is quite general and unifying one. It

is interesting problem to develop efficient and implementable numerical methods for solving the general

quasi-variational inequalities and their variants.

We also need the following result, known as the projection Lemma(best approximation), which plays

a crucial part in establishing the equivalence between the inverse quasi variational inequalities and the

fixed point problems. This result is used in the analyzing the convergence analysis of the implicit and

explicit methods for solving the variational inequalities and related optimization problems.

Lemma 2.1. [47] Let Ω(µ) be a closed and convex-valued set in H. Then, for a given z ∈ H, µ ∈ Ω(µ)

satisfies the inequality

〈µ− z, ν − µ〉 ≥ 0, ∀ν ∈ Ω(µ), (2.12)

if and only if,

µ = ΠΩ(µ)(z),

where ΠΩ(µ) is implicit projection of H onto the closed convex-valued set Ω(µ).

It is well known that the implicit projection operator ΠΩ(µ) is not nonexpansive, but it is required to

satisfy the following assumption, which plays an important part in the derivation of the results..

Assumption 2.1.

‖ΠΩ(µ)ω −ΠΩ(ν)ω‖ ≤ η‖µ− ν‖,∀µ, ν, ω ∈ H, (2.13)

where η > 0 is a constant.
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Assumption 2.1 has been used to prove the existence of a solution of general quasi variational

inequalities as well as in analyzing convergence of the iterative methods.

In many important applications, the convex-valued set Ω(µ) can be written as

Ω(µ) = m(µ) + Ω,

is known as the moving convex set,where m(µ) is a point-point mapping and Ω is a convex set. In this

case, we have

ΠΩ(µ)ω = Πm(µ)+Ω = m(µ) + ΠΩ[w −m(µ)], ∀µ,w ∈ Ω.

We note that, if m(µ) is a Lipschitz continuous mapping with constant γ > 0, then

‖ΠΩ(µ)w −ΠΩ(ν)w‖ = ‖m(µ)−m(ν) + ΠΩ[w −m(µ)]−ΠΩ[w −m(ν)‖

≤ 2‖m(µ)−m(ν)‖ ≤ 2γ‖µ− ν‖, ∀µ, ν, w ∈ Ω.

which shows that Assumption 2.1 holds with η = 2γ.

Definition 2.5. An operator T : H → H is said to be:

1. Strongly monotone, if there exist a constant α > 0, such that

〈T µ− T ν, µ− ν〉 ≥ α‖µ− ν‖2, ∀µ, ν ∈ H.

2. Lipschitz continuous, if there exist a constant β > 0, such that

‖T µ− T ν‖ ≤ β‖µ− ν‖, ∀µ, ν ∈ H.

3. Monotone, if

〈T µ− T ν, µ− ν〉 ≥ 0, ∀µ, ν ∈ H.

4. Pseudo monotone, if

〈T µ, ν − µ〉 ≥ 0 ⇒ 〈T ν, ν − µ〉 ≥ 0, ∀µ, ν ∈ H.

Remark 2.2. Every strongly monotone operator is a monotone operator and monotone operator is a

pseudo monotone operator, but the converse is not true.
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3 Projection Method

In this section, we use the fixed point formulation to suggest and analyze some new implicit methods for

solving the inverse quasi variational inequalities.

Using Lemma 2.1, one can show that the inverse quasi variational inequalities are equivalent to the

fixed point problems.

Lemma 3.1. The function µ ∈ Ω(µ) is a solution of the inverse quasi variational inequality (2.7), if and

only if, µ ∈ Ω(µ) satisfies the relation

g(µ) = ΠΩ(µ)[g(µ)− ρµ], (3.1)

where ΠΩ(µ) is the implicit projection operator and ρ > 0 is a constant.

Proof. Let u ∈ Ω(µ) be a solution of the problem (2.7). Then

〈ρµ+ g(µ)− g(µ), ν − g(µ)〉 ≥ 0, ∀ν ∈ Ω(µ).

Using Lemma 2.1, we have

g(µ) = ΠΩ(µ)[g(µ)− ρµ],

the required result.

Lemma 3.1 implies that the inverse quasi variational inequality (2.7) is equivalent to the fixed point

problem (3.1). This equivalent fixed point formulation (3.1) will play an important role in deriving the

main results.

From the equation (3.1), we have

µ = µ− g(µ) + ΠΩ(µ)[g(µ)− ρµ].

We define the function F associated with (3.1) as

F (µ) = µ− g(µ) + ΠΩ(µ)[g(µ)− ρµ], (3.2)

To prove the unique existence of the solution of the problem (2.7), it is enough to show that the map F

defined by (3.2) has a fixed point.

Theorem 3.1. Let the operator g be strongly monotone with constant σ > 0 and Lipschitz continuous

with constant ζ > 0, respectively. If the Assumption 2.1 holds and there exists a parameter ρ > 0, such

that

ρ < 1− k, k < 1, (3.3)
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where

θ = ρ+ k (3.4)

k =
√

1− 2σ + ζ2 + η + ζ. (3.5)

then there exists a unique solution of the problem (2.5).

Proof. From Lemma 3.1, it follows that problems (3.1) and (2.7) are equivalent. Thus it is enough to

show that the map F (u), defined by (3.2) has a fixed point.

For all ν 6= µ ∈ Ω(µ), we have

‖F (µ)− F (ν)‖ = ‖µ− ν − (g(µ)− g(ν))‖+ ΠΩ(µ)‖[g(µ)− ρµ]−ΠΩ(ν)[g(ν)− ρν]‖

= ‖ν − µ− (g(ν)− g(µ))‖+ ‖ΠΩ(µ)[g(ν)− ρν]−ΠΩ(ν)[g(ν)− ρν]‖

+ ‖ΠΩ(ν)[g(ν)− ρν]−ΠΩ(ν)[g(µ)− ρµ]‖

≤ ‖µ− ν − (g(µ)− g(ν))‖+ η‖ν − µ‖+ ‖g(ν)− g(µ)− ρ(ν − µ)‖

≤ ‖µ− ν − (g(µ)− g(ν)‖+ η‖ν − µ‖+ ζ‖ν − µ‖+ ρ‖ν − µ‖. (3.6)

Since the operator g is strongly monotone with constants σ > 0 and Lipschitz continuous with constant

ζ > 0, it follows that

‖µ− ν − (g(µ)− g(ν))‖2 ≤ ‖µ− ν||2 − 2〈g(µ)− g(ν), µ− ν〉+ ζ2‖g(µ)− g(ν)‖2

≤ (1− 2σ + ζ2)‖µ− ν‖2. (3.7)

From (4.5) and (3.7), we have

‖F (µ)− F (ν)‖ ≤ 2
{√

(1− 2σ + ζ2) + η + ζ + ρ
}
‖µ− ν‖

= θ‖µ− ν‖,

where

θ = ρ+ k

k = 2
√

1− 2σ + ζ2 + η + ζ.

From (3.3), it follows that θ < 1, which implies that the map F (u) defined by (3.2) has a fixed point,

which is the unique solution of (2.7).

The fixed point formulation (3.1) is applied to propose and suggest the iterative methods for solving

the problem (2.7).

This alternative equivalent formulation (3.1) is used to suggest the following iterative methods for

solving the problem (2.7).
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Algorithm 3.1. For a given µ0, compute the approximate solutions {µn}, {wn} and {yn} by the iterative

schemes

g(yn) = ΠΩ(µn)[g(µn)− ρµn]

g(wn) = ΠΩ(yn)[g(yn)− ρyn]

g(µn+1) = ΠΩ(wn)[g(wn)− ρwn].

Algorithm 3.1 is a three step forward-backward splitting algorithm for solving inverse quasi variational

inequality (2.7). This method is very much similar to that of Glowinski et al. [21] for variational

inequalities, which they suggested by using the Lagrangian technique.

We now suggested and analyzed the three step iterative methods for solving the inverse quasi

variational inequality (2.7).

Algorithm 3.2. For a given µ0, compute the approximate solution {µn+1} by the iterative schemes

yn = (1− γn)µn + γn{µn − g(µn) + ΠΩ(µn)[g(µn)− ρµn]} (3.8)

wn = (1− βn)µn + βn{yn − g(yn) + ΠΩ(yn)[g(yn)− ρyn]} (3.9)

µn+1 = (1− αn)µn + αn{wn − g(wn) + ΠΩ(wn)[wn − ρwn]}. (3.10)

which are known as Noor iterations.

For γn = 0, Algorithm 3.2 reduces to:

Algorithm 3.3. For a given µ0, compute {µn+1} by the iterative schemes

wn = (1− βn)µn + βn{µn − g(µn) + ΠΩ(µn)[g(µn)− ρµn]}

µn+1 = (1− αn)µn + αn{wn − g(wn) + ΠΩ(µn)[g(wn)− ρwn},

which is known as the Ishikawa iterative scheme for the problem (2.7).

Note that for γn = 0 and βn = 0, Algorithm 3.1 is called the Mann iterative method, that is.

Algorithm 3.4. For a given µ0, compute {µn+1} by the iterative schemes

µn+1 = (1− βn)µn + βn{µn − g(µn) + ΠΩ(µn)[g(µn)− ρµn]}.

We suggest new perturbed iterative schemes for solving the inverse quasi variational inequality (2.7).
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Algorithm 3.5. For a given µ0, compute the approximate solution {µn} by the iterative schemes

yn = (1− γn)µn + γn{µn − g(µn) + ΠΩ(µn)[g(µn)− ρµn]}+ γnhn

wn = (1− βn)µn + βn{yn − g(yn) + ΠΩ(yn)[g(yn)− ρyn]}+ βnfn

µn+1 = (1− αn)µn + αn{wn − g(wn) + ΠΩ(wn)[g(wn)− ρwn}+ αnen,

where {en}, {fn}, and {hn} are the sequences of the elements of H introduced to take into account possible

inexact computations and ΠΩ(µn) is the corresponding perturbed projection operator and the sequences

{αn}, {βn} and {γn} satisfy

0 ≤ αn, βn, γn ≤ 1; ∀n ≥ 0,

∞∑
n=0

αn =∞.

For γn = 0, we obtain the perturbed Ishikawa iterative method and for γn = 0 and βn = 0, we obtain

the perturbed Mann iterative schemes for solving inverse quasi variational inequality (2.7).

We now study the convergence analysis of Algorithm 3.2, which is the main motivation of our next

result.

Theorem 3.2. Let the operator g satisfy all the assumptions of Theorem 3.1. If the condition (3.3)

holds, then the approximate solution {un} obtained from Algorithm 3.2 converges to the exact solution

µ ∈ Ω(µ) of the inverse quasi variational inequality (2.7) strongly in H.

Proof. From Theorem 3.1, we see that there exists a unique solution µ ∈ Ω(µ) of the inverse quasi

variational inequalities (2.7). Let µ ∈ Ω(µ) be the unique solution of (2.7). Then, using Lemma 3.1, we

have

µ = (1− αn)µ+ αn{µ− g(µ) + ΠΩ(µ)[g(µ)− ρµ]} (3.11)

= (1− βn)µ+ βn{µ− g(µ) + ΠΩ(µ)[g(µ)− ρµ]} (3.12)

= (1− γn)µ+ γn{µ− g(µ) + ΠΩ(µ)[g(µ)− ρµ]}. (3.13)
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From (3.10), (3.11) and Assumption (2.1), we have

‖µn+1 − µ‖ = ‖(1− αn)(µn − µ) + αn(wn − µ− (g(wn)− g(µ)))

+ αnΠΩ((wn)[g(wn)− ρwn]−Π(µ)[g(µ)− ρµ}‖

≤ (1− αn)‖µn − µ‖+ αn‖wn − µ− (g(wn)− g(µ))‖

+ αnΠΩ((wn)[g(wn)− ρwn]−ΠΩ(wn)[g(µn)− ρµ}‖

+ αn{Π(wn)[g(µn)− ρµ]−ΠΩ(µ)[g(µ)− ρµ}‖

≤ (1− αn)‖µn − µ‖+ αn‖wn − µ− (g(wn)− g(µ))‖

+ αn‖g(wn)− g(µ)− ρ(wn − µ)||+ αnη‖wn − µ‖

≤ (1− αn)‖µn − µ||+ αn(k + ρ)||wn − µ‖

= (1− αn)||un − µ‖+ αnθ||wn − µ‖, (3.14)

where θ is defined by (3.4).

In a similar way, from (3.8) and (3.12), we have

‖wn − µ‖ ≤ (1− βn)‖µn − µ‖+ 2βnθ‖yn − µ− (g(yn)− g(µ))‖

+ βn‖g(yn)− g(µ)− ρ(yn − µ)‖+ βnη‖yn − µ‖

≤ (1− βn)‖µn − µ‖+ βn(k + ρ)‖yn − µ‖,

≤ (1− βn)‖µn − µ||+ βnθ‖yn − µ‖, (3.15)

where θ is defined by (3.3).

From (3.8) and (3.13), we obtain

‖yn − µ‖ ≤ (1− γn)‖µn − µ‖+ γnθ‖µn − µ‖

≤ (1− (1− θ)γn)‖µn − µ‖

≤ ||µn − µ||. (3.16)

From (3.15) and (3.16), we obtain

‖wn − µ‖ ≤ (1− βn)‖µn − µ‖+ βnθ‖µn − µ‖

= (1− (1− θ)βn)‖µn − µ‖

≤ ||µn − µ||. (3.17)

Form the above equations, we have

‖µn+1 − µ‖ ≤ (1− αn)‖µn − µ‖+ αnθ‖µn − µ‖

= [1− (1− θ)αn]‖µn − µ‖

≤
n∏
i=0

[1− (1− θ)αi]‖µ0 − µ‖.

http://www.earthlinepublishers.com



New Iterative Methods and Sensitivity Analysis for Inverse Quasi Variational Inequalities 509

Since
∑∞

n=0 αn diverges and 1− θ > 0, we have
∏n
i=0[1− (1− θ)αi] = 0. Consequently the sequence {un}

convergence strongly to µ. From (3.16), and (3.17), it follows that the sequences {yn} and {wn} also

converge to µ strongly in H. This completes the proof.

Also, we can suggest the following iterative methods for solving the inverse quasi variational

inequalities.

Algorithm 3.6. For a given µ0, compute µn+1 by the iterative scheme

µn+1 = µn − g(µn) + ΠΩ(µn)[g(µn)− ρµn], n = 0, 1, 2, ... (3.18)

which is known as the projection method.

Algorithm 3.7. For a given µ0, compute µn+1 by the iterative scheme

µn+1 = µn − g(µn) + ΠΩ(µn+1)[g(µn)− ρµn+1], n = 0, 1, 2, ... (3.19)

which is known as the implicit projection method and is equivalent to the following two-step method.

Algorithm 3.8. For a given µ0, compute µn+1 by the iterative scheme

ωn = µn − g(µn) + ΠΩ(µn)[g(µn)− ρµn]

µn+1 = µn − g(µn) + ΠΩ(ωn)[g(µn)− ρωn], n = 0, 1, 2, ...

Algorithm 3.9. For a given µ0, compute µn+1 by the iterative scheme

µn+1 = µn − g(µn) + ΠΩ(µn+1)[g(µn+1)− ρµn+1], n = 0, 1, 2, ... (3.20)

which is known as the modified projection method and is equivalent to the iterative method.

Algorithm 3.10. For a given µ0, compute µn+1 by the iterative scheme

ωn = µn − g(µn) + ΠΩ(µn)[g(µn)− ρun]

µn+1 = µn − g(µn) + ΠΩ(ωn)[g(ωn)− ρωn], n = 0, 1, 2, ...

which is two-step predictor-corrector method for solving the problem (2.7).

We can rewrite the equation (3.1) as:

µ = µ− g(µ) + ΠΩ(µ)[g
(µ+ µ

2

)
− ρµ]. (3.21)

This fixed point formulation is used to suggest the following implicit method.
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Algorithm 3.11. [46]. For a given µ0, compute µn+1 by the iterative scheme

µn+1 = µn − g(µn) + ΠΩ(µn+1)[g
(µn + µn+1

2

)
− ρµn+1]. (3.22)

Applying the predictor-corrector technique, we suggest the following inertial iterative method for

solving the problem (2.7) .

Algorithm 3.12. For a given µ0, compute µn+1 by the iterative scheme

ωn = µn − g(µn) + ΠΩ(µn)[g(µn)− ρµn]

µn+1 = µn − g(µn) + ΠΩ(ωn)[g
(ωn + µn

2

)
− ρωn].

One can rewrite (3.1) as

µ = µ− g(µ) + ΠΩ(µ)[(
µ+ µ

2
)− ρT (

µ+ µ

2
)]. (3.23)

This equivalent fixed point formulation enables us to suggest the following implicit method for solving

the problem (2.5).

Algorithm 3.13. For a given µ0, compute µn+1 by the iterative scheme

µn+1 = µn − g(µn) + ΠΩ(µn+1)[g(
µn + µn+1

2
)− ρ(

µn + µn+1

2
)]. (3.24)

To implement the implicit method, one uses the predictor-corrector technique. We use Algorithm 3.9

as the predictor and Algorithm 3.13 as corrector. Thus, we obtain a new two-step method for solving the

problem (2.7).

Algorithm 3.14. For a given µ0, compute µn+1 by the iterative scheme

ωn = µn − g(µn) + ΠΩ(µn)[g(µn)− ρµn]

µn+1 = µn − g(µn) + ΠΩ(ωn)

[
g(

(
ωn + µn

2

)
− ρ
(
ωn + µn

2

)]
,

which is a new predictor-corrector two-step method.

For a parameter ξ, one can rewrite the (3.1) as

µ = µ− g(µ) + ΠΩ(µ)[g((1− ξ)µ+ ξµ)− ρ((1− ξ)µ+ ξµ)].

This equivalent fixed point formulation enables to suggest the following inertial method for solving the

problem (2.5).
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Algorithm 3.15. For a given µ0, µ1 ∈ Ω(µ), compute µn+1 by the iterative scheme

µn+1 = µn − g(µn) + ΠΩ(µn)[g((1− ξ)µn + ξµn−1)− ρ((1− ξ)µn + ξµn−1)], n = 0, 1, 2, ....

It is noted that Algorithm 3.15 is equivalent to the following two-step method.

Algorithm 3.16. For given µ0, µ1, compute µn+1 by the iterative scheme

ωn = (1− ξ)un + ξun−1

µn+1 = µn − g(µn) + ΠΩ(µn)[g(ωn)− ρωn].

Algorithm 3.16 is known as the inertial projection method.

We now suggest multi-step inertial methods for solving the inverse quasi variational inequalities (2.7).

Algorithm 3.17. For given µ0, µ1, compute µn+1 by the recurrence relation

ωn = µn −Θn (µn − µn−1)

yn = (1− βn)ωn + βn

{
ωn − g(ωn) + Π(ωn)

[
g(
ωn + µn

2
)− ρ(

ωn + µn
2

)

]}
,

µn+1 = (1− αn)yn + αn

{
yn − g(yn) + ΠΩ(yn)

[
g(
ωn + yn

2
)− ρ(

yn + ωn
2

)

]}
,

where Θn ∈ [0, 1], ∀n ≥ 1.

Algorithm 3.17 is a three-step modified inertial method for solving inverse quasi variational inequalities

(2.7).

Similarly a four-step inertial method for solving the inverse quasi variational inequalities (2.7) is

suggested.

Algorithm 3.18. For given µ0, µ1, compute µn+1 by the recurrence relation

ωn = µn −Θn (µn − µn−1) ,

yn = (1− γn)ωn + γn

{
ωn − g(ωn) + Π(ωn)

[
g(
ωn + µn

2
)− ρ(

ωn + µn
2

)

]}
,

zn = (1− βn)yn + βn

{
yn − g(yn) + ΠΩ(yn)

[
g(
yn + ωn + µn

3
)− ρ(

yn + ωn + µn
3

)

]}
,

µn+1 = (1− αn)zn + αn

{
zn − g(zn) + ΠΩ(zn)

[
g(
zn + yn + ωn

3
)− ρ(

yn + zn + ωn
3

)

]}
,

where αn, βn, γn,Θn ∈ [0, 1], ∀n ≥ 1.
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Using the technique of Noor et al. [71] and Jabeen et al. [28–30], one can investigate the convergence

analysis of these inertial projection methods. We would like to mention that Algorithm 3.17 and Algorithm

3.18 can be viewed as the generalizations of Noor (three-step) iterations [51,54,63] for solving the inverse

quasi variational inequalities. Similar multi-step hybrid iterative methods can be proposed and analyzed

for solving system of inverse quasi variational inequalities, which is an interesting problem.

4 Wiener-Hopf Equations Technique

In this section, we discuss the Wiener-Hopf equations associated with the quasi variational inequalities.

It is worth mentioning that the Wiener-Hopf equations associated with variational inequalities were

introduced and studied by Shi [80] and Ronbinson [78] independently using different techniques. Noor [50]

proved that the quasi variational inequalities are equivalent to the implicit Wiener-Hopf equations.

We now consider the problem of solving the inverse Wiener-Hopf equations related to the inverse quasi

variational inequalities. Let RΩ(µ) = I −ΠΩ(µ), and ΠΩ(µ) be the projection operator.

We consider the problem of finding z ∈ H such that

ΠΩ(µ)z + ρ−1RΩ(µ)z = 0. (4.1)

The equations of the type (4.1) are called the inverse Wiener-Hopf equations. We apply the inverse

Wiener-Hopf equations to consider some iterative methods, sensitivity analysis and other aspects of the

inverse quasi variational inequalities.

Lemma 4.1. The element µ ∈ Ω(µ) is a solution of the inverse quasi variational inequality (2.7), if and

only if, z ∈ H satisfies the resolvent equation (4.1), where

g(µ) = ΠΩ(µ)z, (4.2)

z = g(µ)− ρµ, (4.3)

where ρ > 0 is a constant.

From Lemma 4.1, it follows that the inverse quasi variational inequalities (2.7) and the inverse

Wiener-Hopf equations (4.1) are equivalent. This alternative equivalent formulation has been used to

suggest and analyze a wide class of efficient and robust iterative methods for solving the inverse quasi

variational inequalities and related optimization problems.

We use the inverse Wiener-Hopf equations (4.1) to suggest some new iterative methods for solving the
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inverse quasi variational inequalities. From (4.2) and (4.3),

z = ΠΩ(µ)z − ρg−1ΠΩ(µ)z

= g−1ΠΩ(µ)[g(µ)− ρµ]− ρg−1ΠΩ(µ)[g(µ)− ρµ].

Thus, we have

g(µ) = ΠΩ(µ)

[
g−1ΠΩ(µ)[g(µ)− ρµ]− ρg−1ΠΩ(µ)[g(µ)− ρµ]

]
implies that

µ = (1− αn)µ+ αn

(
g(µ)−

[
ΠΩ(µ)

[
g−1ΠΩ(µ)[g(µ)− ρµ]− ρg−1ΠΩ(µ)[g(µ)− ρµ]

])
Consequently, for a constant αn > 0, we can suggest the following new predictor-corrector method for

solving the inverse quasi variational inequalities (2.7).

Algorithm 4.1. For given u0, compute un+1 by the iterative scheme

µn+1 = (1− αn)µn + αn

[[
g(µn)−ΠΩ(µn)

[
g(wn)− ρwn

]]
(4.4)

where

g(wn) = ΠΩ(µn)[g(µn)− ρµn], (4.5)

which appears to be a new one.

In a similar way, we can suggest and analyse the predictor-corrector method for solving the inverse

quasi variational inequalities (2.7), which only involve only one projection.

Algorithm 4.2. For given u0, u1, compute un+1 by the iterative scheme

ωn = µn − ξ(µn − µn−1)

µn+1 = ΠΩ(µn)[ρωn − ρµn].

Remark 4.1. We have only given some glimpse of the technique of the inverse Wiener-Hopf equations

for solving the inverse quasi variational inequalities. One can explore the applications of the inverse

Wiener-Hopf equations in developing efficient numerical methods for variational inequalities and related

nonlinear optimization problems.
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5 Auxiliary Principle Technique

There are several techniques such as projection, resolvent, descent methods for solving the variational

inequalities and their variant forms. None of these techniques can be applied for suggesting the iterative

methods for solving the several nonlinear variational inequalities and equilibrium problems. To overcome

these drawbacks, one usually applies the auxiliary principle technique, which is mainly due to Glowinski

et al [20] as developed in [49,54,73,74,77], to suggest and analyze some proximal point methods for solving

general quasi variational inequalities (2.5).

We apply the auxiliary principle technique involving an arbitrary operator, which is mainly due to

Noor [49], for finding the approximate solution of the inverse quasi variational inequalities (2.7).

For a given µ ∈ Ω(µ) satisfying (2.7), find w ∈ Ω(µ) such that

〈ρ(w + η(µ− w)), ν − g(w)〉+ 〈M(w)−M(µ), ν − w〉 ≥ 0, ∀ν ∈ Ω(µ), (5.1)

where ρ > 0, η ∈ [0, 1] are constants and M is an arbitrary operator. The inequality (8.4) is called the

auxiliary inverse quasi variational inequality.

If w = µ, then w is a solution of (2.7). This simple observation enables us to suggest the following

iterative method for solving (2.7).

Algorithm 5.1. For a given µ0 ∈ Ω(µ), compute the approximate solution µn+1 by the iterative scheme

〈ρ(µn+1 + η(µn − µn+1)), ν − g(µn+1)〉

+〈M(µn+1)−M(µn), ν − µn+1〉 ≥ 0, ∀ν ∈ Ω(µ). (5.2)

Algorithm 5.1 is called the hybrid proximal point algorithm for solving the inverse quasi variational

inequalities (2.7).

Special Cases: We now discuss some special cases.

(I). For η = 0, Algorithm 5.1 reduces to

Algorithm 5.2. For a given µ0, compute the approximate solution µn+1 by the iterative scheme

〈ρµn+1, ν − g(µn+1)〉+ 〈M(µn+1)−M(µn), ν − µn+1〉 ≥ 0, ∀ν ∈ Ω(µ), (5.3)

is called the implicit iterative methods for solving the problem (2.7).

(II). If η = 1, then Algorithm 5.1 collapses to
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Algorithm 5.3. For a given µ0, compute the approximate solution µn+1 by the iterative scheme

〈ρµn, ν − g(µn+1)〉+ 〈M(µn+1)−M(µn), ν − µn+1〉 ≥ 0, ∀ν ∈ Ω(µ),

is called the explicit iterative method.

(III). For η = 1
2 , Algorithm 5.1 becomes:

Algorithm 5.4. For a given µ0, compute the approximate solution µn+1 by the iterative scheme

〈ρ(
µn+1 + µn

2
), ν − g(µn+1)〉+ 〈M(µn+1)−M(µn), ν − µn+1〉 ≥ 0, ∀ν ∈ Ω(µ),

is known as the mid-point proximal method for solving the problem (2.7).

For the convergence analysis of Algorithm 5.2, we need the following concepts.

Definition 5.1. An operator g is said to be pseudomontone, if

〈µ, ν − g(µ)〉 ≥ 0, ∀ν ∈ Ω(µ),

implies that

−〈ν, g(µ)− ν〉 ≥ 0, ∀ν ∈ Ω(µ).

Theorem 5.1. Let the operator g be a pseudo-monotone. Let the approximate solution µn+1 obtained

in Algorithm 5.2 converges to the exact solution µ ∈ Ω(µ) of the problem (2.7). If the operator M is

strongly monotone with constant ξ ≥ 0 and Lipschitz continuous with constant ζ ≥ 0, then

ξ‖µn+1 − µn‖ ≤ ζ‖µ− µn‖. (5.4)

Proof. Let µ ∈ Ω(µ) be a solution of the problem (2.7). Then

−〈ρν, g(µ)− ν〉 ≥ 0, ∀ν ∈ Ω(µ), (5.5)

since the operator g is a pseudo-monotone.

Taking ν = µn+1 in (5.5), we obtain

−〈ρµn+1, g(µ)− µn+1〉 ≥ 0. (5.6)

Setting ν = µ in (8.6), we have

〈ρµn+1, g(µ)− µn+1〉+ 〈M(µn+1)−M(µn), µ− µn+1〉 ≥ 0. (5.7)
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Combining (5.7), (5.6) and (5.5), we have

〈M(µn+1)−M(µn), µ− µn+1〉 ≥ −〈ρµn+1, g(µ)− un+1〉 ≥ 0. (5.8)

From the equation (5.8), we have

0 ≤ 〈M(µn+1)−M(µn), µ− µn+1〉

= 〈M(µn+1)−M(µn), µ− µn + µn − un+1〉

= 〈M(µn+1)−M(µn), µ− µn〉+ 〈M(µn+1 −M(µn), µn − µn+1〉,

which implies that

〈M(µn+1 −M(µn), µn+1 − µn〉 ≤ 〈M(µn+1)−M(µn), µ− µn〉.

Now using the strongly monotonicity with constant ξ > 0 and Lipschitz continuity with constant ζ of the

operator M, we obtain

ξ‖µn+1 − µn‖2 ≤ ζ‖µn+1 − µn‖‖µn − µ‖.

Thus

ξ‖µn − µn+1‖ ≤ ζ‖µn − µ‖,

the required result (5.4).

Theorem 5.2. Let H be a finite dimensional space and all the assumptions of Theorem 5.1 hold. Then

the sequence {µn}
∞

0
given by Algorithm 5.2 converges to the exact solution µ ∈ Ω(µ) of (2.7).

Proof. Let µ ∈ Ω(µ) be a solution of (2.7). From (5.4), it follows that the sequence {‖µ − µn‖} is

nonincreasing and consequently {un} is bounded. Furthermore, we have

ξ
∞∑
n=0

‖µn+1 − µn‖ ≤ ζ‖µn − µ‖,

which implies that

lim
n→∞

‖µn+1 − µn‖ = 0. (5.9)

Let µ̂ be the limit point of {µn}
∞

0
; whose subsequence {µnj}

∞

1
of {µn}

∞

0
converges to µ̂ ∈ Ω(µ). Replacing

wn by µnj in (7.2), taking the limit nj −→∞ and using (5.9), we have

〈ρµ̂, ν − g(µ̂)〉 ≥ 0, ∀ν ∈ Ω(µ),
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which implies that û solves the problem (2.7) and

‖µn+1 − µ‖ ≤ ‖µn − µ‖.

Thus, it follows from the above inequality that {µn}
∞

1
has exactly one limit point û and

lim
n→∞

(µn) = µ̂.

the required result.

In recent years inertial type iterative methods have been applied to find the approximate solutions

of variational inequalities and related optimizations. We again apply the modified auxiliary principle

approach involving an arbitrary nonlinear operator to suggest some hybrid inertial proximal point schemes

for solving the inverse quasi variational inequalities.

For a given µ ∈ Ω(µ) satisfying (2.5), find w ∈ Ω(µ) such that

〈ρ(w + η(µ− w)), ν − g(w)〉

+〈M(w)−M(µ) + α(µ− µ), ν − w〉 ≥ 0, ∀ν ∈ Ω(µ), (5.10)

where ρ > 0, η, α ∈ [0, 1] are constants and M is a nonlinear operator.

Clearly w = µ, implies that w is a solution of (2.5). This simple observation enables us to suggest the

following iterative method for solving (2.5).

Algorithm 5.5. For given µ0, µ1, compute the approximate solution µn+1 by the iterative scheme

〈ρ(µn+1 + η(µn − µn+1)), ν − g(µn+1)〉

+〈M(µn+1)−M(µn) + α(µn − µn−1), ν − µn+1〉 ≥ 0, ∀ν ∈ Ω(µ).

Algorithm 5.5 is called the hybrid proximal point algorithm for solving the inverse quasi variational

inequalities (2.7). For α = 0, Algorithm 5.5 is exactly Algorithm 5.1.

For M = I, Algorithm 5.5 reduces to the following method:

Algorithm 5.6. For given µ0, µ1, compute the approximate solution µn+1 by the iterative scheme

〈ρ(µn+1 + η(µn − µn+1)), ν − g(µn+1)〉

+〈µn+1 − µn + α(µn − µn−1), ν − µn+1〉 ≥ 0, ∀ν ∈ Ω(µ).

Remark 5.1. For different and suitable choice of the parameters ρ, η, α, operators g,M and convex-valued

sets, one can recover new and known iterative methods for solving inverse quasi variational inequalities,

inverse complementarity problems and related optimization problems. Using the technique and ideas of

Theorem 5.1 and Theorem 5.2, one can analyze the convergence of Algorithm 5.5 and its special cases.

.
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6 Dynamical Systems Technique

In this section, we consider the dynamical systems technique for solving the inverse quasi variational

inequalities. The projected dynamical systems associated with variational inequalities were considered

by Dupuis and Nagurney [19]. It is worth mentioning that the dynamical system is a first order initial

value problem. Consequently, variational inequalities and nonlinear problems arising in various branches

in pure and applied sciences can now be studied via the differential equations. It has been shown that

the dynamical systems are useful in developing some efficient numerical techniques for solving variational

inequalities and related optimization problems. For more details, see [7,18,19,31,53–55,63,64,69,73,87,88].

We consider some new iterative methods for solving the quasi variational inequalities. We investigate the

convergence analysis of these new methods involving only the monotonicity of the operators.

We now define the residue vector R(µ) by the relation

R(µ) = ΠΩ(µ)[g(µ)− ρµ]− g(µ)}. (6.1)

Invoking Lemma 3.1, one can easily conclude that µ ∈ H is a solution of the problem(2.7), if and only if,

µ ∈ H is a zero of the equation

R(µ) = 0. (6.2)

We now consider a dynamical system associated with the inverse quasi variational inequalities. Using the

equivalent formulation (3.1), we suggest a class of projection dynamical systems as

dµ

dt
= λ{ΠΩ(µ)[g(µ)− ρµ]− g(µ)}, µ(t0) = α, (6.3)

where λ is a parameter. The system of type (6.3) is called the projection dynamical system associated

with the problem (2.7). Here the right hand is related to the projection and is discontinuous on the

boundary. From the definition, it is clear that the solution of the dynamical system always stays in H.

This implies that the qualitative results such as the existence, uniqueness and continuous dependence of

the solution of (2.7) can be studied.

The equilibrium point of the dynamical system (6.13) is defined as follows.

Definition 6.1. An element µ ∈ H, is an equilibrium point of the dynamical system (6.13), if,

dµ

dx
= 0.

Thus it is clear that µ ∈ H is a solution of the inverse quasi variational inequality (2.7), if and only if,

µ ∈ H is an equilibrium point.

This implies that µ ∈ Ω(µ) is a solution of the inverse quasi variational inequality (2.7), if and only

if, µ ∈ Ω(µ) is an equilibrium point.
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Definition 6.2. [19] The dynamical system is said to converge to the solution set S∗ of (6.3), if,

irrespective of the initial point, the trajectory of the dynamical system satisfies

lim
t→∞

dist(µ(t), S∗) = 0, (6.4)

where

dist(µ, S∗) = infν∈S∗‖µ− ν‖.

It is easy to see, if the set S∗ has a unique point µ∗, then (6.4) implies that

lim
t→∞

µ(t) = µ∗.

If the dynamical system is still stable at µ∗ in the Lyapunov sense, then the dynamical system is globally

asymptotically stable at µ∗.

Definition 6.3. The dynamical system is said to be globally exponentially stable with degree η at µ∗,

if, irrespective of the initial point, the trajectory of the system satisfies

‖µ(t)− µ∗‖ ≤ u1‖µ(t0)− µ∗‖exp(−η(t− t0)), ∀t ≥ t0,

where u1 and η are positive constants independent of the initial point.

It is clear that the globally exponentially stability is necessarily globally asymptotically stable and the

dynamical system converges arbitrarily fast.

Lemma 6.1. (Gronwall Lemma) [19] Let µ̂ and ν̂ be real-valued nonnegative continuous functions with

domain {t : t ≤ t0} and let α(t) = α0(|t− t0|), where α0 is a monotone increasing function. If, for t ≥ t0,

µ̂ ≤ α(t) +

∫ t

t0

µ̂(s)ν̂(s)ds,

then

µ̂(s) ≤ α(t)exp{
∫ t

t0

ν̂(s)ds}.

We now establish that the trajectory of the solution of the projection dynamical system (6.3) converges

to the unique solution of the inverse quasi variational inequality (2.7). The analysis is in the spirit of

Noor [54,55] and Xia and Wang [87,88].

Theorem 6.1. Let the operator g : H −→ H be Lipschitz continuous with constant ζ > 0. If λ(η+2ζ+ρ) <

1 and Assumption 2.1 then, for each µ0 ∈ Ωµ, there exists a unique continuous solution µ(t) of the

dynamical system (6.3) with µ(t0) = µ0 over [t0,∞).
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Proof. Let

G(µ) = ΠΩ(µ)[g(µ)− ρµ]− g(µ)}, ∀µ ∈ H,

where λ > 0 is a constant and G(µ) = dµ
dt .

∀µ, ν ∈ H, we have

‖G(µ)−G(ν)‖ ≤ λ{ΠΩ(µ)[g(µ)− ρµ]−ΠΩ(ν)[g(ν)− ρν]‖+ ‖g(µ)− g(ν)‖}

= λ{‖g(µ)− g(ν)‖+ ‖ΠΩ(µ)[g(µ)− ρµ]−ΠΩ(µ)[g(ν)− ρν]‖

+‖ΠΩ(µ)[g(ν)− ρν]−ΠΩ(ν)[g(ν)− ρν]‖}

≤ λ{‖g(µ)− g(ν)‖+ η‖µ− ν‖+ ‖g(µ)− g(ν)− ρµ− ν)}

≤ λ{‖g(µ)− g(ν)‖+ η‖µ− ν‖+ {‖g(µ)− g(ν)‖+ ρ‖µ− ν‖}

≤ λ{(η + 2ζ + ρ)}‖µ− ν‖.

This implies that the operator G(µ) is a Lipschitz continuous with constant λ{(η + 2ζ + ρ)} < 1 and for

each µ ∈ Ω(µ), there exists a unique and continuous solution µ(t) of the dynamical system (6.3), defined

on an interval t0 ≤ t < T1 with the initial condition µ(t0) = µ0. Let [t0, T1) be its maximal interval of

existence. Then we have to show that T1 =∞. Consider , for any µ ∈ Ω(µ),

‖G(µ)‖ = ‖dµ
dt
‖ = λ‖[g(µ)− ρµ]− g(µ)‖

≤ λ{‖ΠΩ(µ)[g(µ)− ρµ]−ΠΩ(µ)[0]‖+ ‖ΠΩ(µ)[0]− g(µ)‖}

≤ λ{δ‖{g(µ)− ρµ‖+ ‖ΠΩ(µ)[g(µ)]−ΠΩ(µ)[0]‖+ ‖ΠΩ(µ)[0]− g(u)‖}

≤ λ{(ρ+ 2 + 2ζ)‖u‖+ ‖ΠΩ(µ)[0]‖}.

Then

‖µ(t)‖ ≤ ‖µ0‖+

∫ t

t0

‖µ(s)‖ds

≤ (‖µ0‖+ k1(t− t0)) + k2

∫ t

t0

‖µ(s)‖ds,

where k1 = λ‖ΠΩ(µ)[0]‖ and k2 = δλ(ρ+ 2 + 2ζ). Hence by the Gronwall Lemma 6.1, we have

‖µ(t)‖ ≤ {‖u0‖+ k1(t− t0)}ek2(t−t0), t ∈ [t0, T1).

This shows that the solution is bounded on [t0, T1). So T1 =∞.

Theorem 6.2. If the operator g : H −→ H is strongly monotone with constant σ > 0 and ζ > 0, then

the dynamical system (6.3) converges globally exponentially to the unique solution of the general quasi

variational inequality (2.7).
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Proof. Since the operator g is Lipschitz continuous, it follows from Theorem 6.1 that the dynamical system

(6.3) has unique solution µ(t) over [t0, T1) for any fixed µ0 ∈ H. Let µ(t) be a solution of the initial value

problem (6.3). For a given µ∗ ∈ H satisfying (2.7), consider the Lyapunov function

L(µ) = λ‖µ(t)− µ∗‖2, u(t) ∈ Ω(µ). (6.5)

From (6.3) and (6.5), we have

dL

dt
= 2λ〈µ(t)− µ∗, dµ

dt
〉

= 2λ〈µ(t)− µ∗,ΠΩ(µ)[g(µ(t))− ρµ(t)]− g(µ(t))〉

= 2λ〈µ(t)− µ∗,ΠΩ(µ)[g(µ(t))− ρµ(t)]− g(µ∗) + g(µ∗)− g(µ(t))〉

= −2λ〈µ(t)− µ∗, g(µ(t))− g(µ∗)〉

+2λ〈µ(t)− µ∗,ΠΩ(µ)[g(µ(t))− ρµ(t)]− g(µ∗)〉

≤ −2λ〈ρ(µ(t)− µ∗), g(µ(t))− g(µ∗)〉

+2λ〈µ(t)− µ∗,ΠΩ(µ)[g(µ(t))− ρµ(t)]−ΠΩ(µ)[g(µ∗(t))− ρµ∗(t)]〉,

≤ −2λσ‖µ(t)− µ∗‖2 + λ‖g(µ(t))− g(µ∗)‖2

+λ‖ΠΩ(µ)[µ(t)− ρµ(t)]−ΠΩ(µ)[g(µ∗(t))− ρµ∗(t)]‖2 (6.6)

Using the Lipschitz continuity of the operator g, we have

‖ΠΩ(µ)[g(µ)− ρµ]−ΠΩ(µ)[g(µ∗)− ρµ∗]‖ ≤ δ‖g(µ)− g(µ∗)− ρ(µ− µ∗)‖

≤ δ(ζ + ρ)‖µ− µ∗‖. (6.7)

From (6.6) and (6.7), we have

d

dt
‖µ(t)− µ∗‖ ≤ 2ξλ‖µ(t)− µ∗‖,

where

ξ = (δ(1 + ρ)− 2σ).

Thus, for λ = −λ1, where λ1 is a positive constant, we have

‖µ(t)− µ∗‖ ≤ ‖µ(t0)− µ∗‖e−ξλ1(t−t0),

which shows that the trajectory of the solution of the dynamical system (6.3) converges globally

exponentially to the unique solution of the inverse quasi variational inequality (2.7).

We use the dynamical system (6.3) to suggest some iterative for solving the inverse quasi variational

inequalities (2.7). These methods can be viewed in the sense of Korpelevich [33] and Noor [51, 54]
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involving the double projection.

For simplicity, we take λ = 1. Thus the dynamical system (6.3) becomes

dµ

dt
+ g(µ) = ΠΩ(µ)

[
g(µ)− ρµ

]
, µ(t0) = α. (6.8)

The forward difference scheme is used to construct the implicit iterative method. Discretizing (6.8),

we have
µn+1 − µn

h
+ g(µn) = ΠΩ(µn)[g(µn)− ρµn+1], (6.9)

where h is the step size.

Now, we can suggest the following implicit iterative method for solving the inverse quasi variational

inequality (2.7).

Algorithm 6.1. For a given µ0, compute µn+1 by the iterative scheme

µn+1 = µn − g(µn) + ΠΩ(µn+1)

[
g(µn)− ρµn+1 −

µn+1 − µn
h

]
.

This is an implicit method. Algorithm 6.1 is equivalent to the following two-step method.

Algorithm 6.2. For a given µ0, compute µn+1 by the iterative scheme

ωn = µn − g(µn) + ΠΩ(µn)[g(µn)− ρµn]

µn+1 = µn − g(µn) + ΠΩ(ωn)

[
g(µn)− ρωn −

ωn − µn
h

]
.

Discretizing (6.8), we now suggest an other implicit iterative method for solving the inverse quasi

variational inequality (2.7).

µn+1 − µn
h

+ g(µn) = ΠΩ(µn+1)[g(µn+1)− ρµn+1], (6.10)

where h is the step size.

This formulation enables us to suggest the two-step iterative method.

Algorithm 6.3. For a given µ0, compute µn+1 by the iterative scheme

ωn = µn − g(µn) + Πω(µn)[g(µn)− ρµn]

µn+1 = µn − g(µn) + ΠΩ(ωn)

[
g(ωn)− ρωn −

ωn − µn
h

]
.
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Discretizing (6.8), we have

µn+1 − µn
h

= µn − g(µn) + ΠΩ(µn+1)[g(µn+1)− ρµn+1], (6.11)

where h is the step size.

This helps us to suggest the following implicit iterative method for solving the problem (2.7).

Algorithm 6.4. For a given µ0, compute µn+1 by the iterative scheme

ωn = µn − g(µn) + ΠΩ(µn)[g(µn)− ρµn]

µn+1 = µn − g(µn) + ΠΩ(ωn)

[
g(ωn)− ρωn

]
.

Discretizing (6.8), we propose another implicit iterative method.

µn+1 − µn
h

+ g(µn) = ΠΩ(µn+1)[g(µn)− ρµn+1],

where h is the step size.

For h = 1, we can suggest an implicit iterative method for solving the problem (2.7).

Algorithm 6.5. For a given µ0, compute µn+1 by the iterative scheme

µn+1 = µn − g(µn) + ΠΩ(µn+1)[g(µn)− ρµn+1].

From (6.8), we have

dµ

dt
+ g(µ) = ΠΩ((1−α)µ+αµ)[g((1− α)µ+ αµ)− ρ((1− α)µ+ αµ)], (6.12)

where α ∈ [0, 1] is a constant.

Discretization (6.12) and taking h = 1, we have

µn+1 = µn − g(µn) + ΠΩ((1−α)µn+αµn−1)

[
g
(
(1− α)µn + αµn−1

)
− ρ((1− α)µn + αµn−1)

]
,

which is an inertial type iterative method for solving the inverse quasi variational inequality (2.7). Using

the predictor-corrector techniques, we have

Algorithm 6.6. For a given µ0, µ1, compute µn+1 by the iterative schemes

ωn = (1− α)µn + αµn−1

µn+1 = µn − g(µn) + Πωn

[
g(ωn)− ρωn

]
,

which is known as the inertial two-step iterative method.
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We now introduce the second order dynamical system associated with the inverse quasi variational

inequality (2.7). To be more precise, we consider the problem of finding µ ∈ H such that

γ
d2µ

dx2
+
dµ

dx
= λ{ΠΩ(µ)[g(µ)− ρµ]− g(µ)}, µ(a) = α, µ(b) = β, (6.13)

where γ > 0, λ > 0 and ρ > 0 are constants. We would like to emphasize that the problem (6.13) is

indeed a second order boundary vale problem. In a similar way, we can define the second order initial

value problem associated with the dynamical system.

The equilibrium point of the dynamical system (6.13) is defined as follows.

Definition 6.4. An element µ ∈ H, is an equilibrium point of the dynamical system (6.13), if,

γ
d2µ

dx2
+
dµ

dx
= 0.

Thus it is clear that µ ∈ H is a solution of the inverse quasi variational inequality (2.7), if and only if,

µ ∈ H is an equilibrium point.

From (6.13), we have

g(µ) = ΠΩ(µ)[g(µ)− ρµ].

Thus, we can rewrite (6.13) as follows:

g(µ) = ΠΩ(µ)

[
g(µ)− ρµ+ γ

d2µ

dx2
+
dµ

dx

]
. (6.14)

For λ = 1, the problem (6.13) is equivalent to finding µ ∈ Ω such that

γµ̈+ µ̇+ g(µ) = ΠΩ(µ)

[
g(µ)− ρµ

]
, µ(a) = α, µ(b) = β. (6.15)

The problem (6.15) is called the second dynamical system, which is in fact a second order boundary

value problem. This interlink among various fields of mathematical and engineering sciences is fruitful

in developing implementable numerical methods for finding the approximate solutions of the inverse

quasi variational inequalities. Consequently, one can explore the ideas and techniques of the differential

equations to suggest and propose hybrid proximal point methods for solving the inverse quasi variational

inequalities and related optimization problems.

We discretize the second-order dynamical systems (6.15) using central finite difference and backward

difference schemes to have

γ
µn+1 − 2µn + µn−1

h2
+
µn − µn−1

h
+ g(µn) = PΩ(µn)[µn − ρT µn+1], (6.16)

where h is the step size.

If γ = 1, h = 1, then, from equation( 6.16) we have
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Algorithm 6.7. For a given µ0, compute µn+1 by the iterative scheme

µn+1 = µn + g(µn) + ΠΩ(µn)[g(µn)− ρµn+1],

which is the extragradient method for solving the inverse quasi variational inequalities (2.7).

Algorithm 6.7 is an implicit method. To implement the implicit method, we use the predictor-corrector

technique to suggest the method.

Algorithm 6.8. For given µ0, µ1, compute µn+1 by the iterative scheme

yn = (1− θn)µn + θnµn−1

µn+1 = µn − g(µn) + ΠΩ(µn)[g(µn)− ρyn],

is called the two-step inertial iterative method, where θn ∈ [0, 1] is a constant.

In a similar way, we have the following two-step method.

Algorithm 6.9. For given µ0, µ1, compute µn+1 by the iterative scheme

yn = (1− θn)µn + θnµn−1

µn+1 = µn − g(µn) + ΠΩ(yn)[g(yn)− ρyn],

which is also called the double projection method for solving the inverse quasi variational inequalities (2.7).

We discretize the second-order dynamical systems (6.3) using central finite difference and backward

difference schemes to have

γ
µn+1 − 2µn + µn−1

h2
+
µn − µn−1

h
+ g(µn+1) = ΠΩ(µn+1)

[
g(µn)− ρµn+1

]
,

where h is the step size.

Using this discrete form, we can suggest the following an iterative method for solving the inverse quasi

variational inequalities (2.7).

Algorithm 6.10. For given µ0, µ1, compute µn+1 by the iterative scheme

µn+1 = µn − g(µn+1) + ΠΩ(µn)

[
g(µn+1)− ρµn+1 − γ

µn+1 − 2µn + µn−1

h2
+
µn − µn−1

h

]
.

Algorithm 6.10 is called the hybrid inertial proximal method for solving the inverse quasi variational

inequalities and related optimization problems. This is a new proposed method.

Note that, for γ = 0, Algorithm 6.10 reduces to the following iterative method.
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Algorithm 6.11. For given µ0, µ1, compute µn+1 by the iterative scheme

µn+1 = µn − g(µn+1) + ΠΩ(µn+1)

[
g(µn+1)− ρµn+1 +

µn − µn−1

h

]
,

which is called the inertial double projection method.

We now consider the third order dynamical systems associated with the general quasi variational

inequalities of the type (2.7). To be more precise, we consider the problem of finding µ ∈ H, such that

γ
d3µ

dt3
+ ζ

d2µ

dt2
+ ξ

dµ

dt
+ g(µ) = ΠΩ(µ)[g(µ)− ρµ], u(a) = α, µ̇(a) = β, µ̇(b) = 0 (6.17)

where γ > 0, ζ, ξ and ρ > 0 are constants. Problem (6.17) is called third order dynamical system associated

with inverse quasi variational inequalities (2.7).

The equilibrium point of the dynamical system (6.17) is defined as follows.

Definition 6.5. An element µ ∈ H, is an equilibrium point of the dynamical system (6.13), if,

γ
d3µ

dt3
+ ζ

d2µ

dt2
+ ξ

dµ

dt
= 0.

Thus it is clear that µ ∈ H is a solution of the general quasi variational inequality (2.5), if and only

if, µ ∈ H is an equilibrium point.

Consequently, the problem (6.3) can be equivalent written as

g(µ) = ΠΩ(µ)

[
g(µ)− ρµ+ γ

d3µ

dt3
+ ζ

d2µ

dt2
+ ξ

dµ

dt

]
. (6.18)

We discretize the third-order dynamical systems (6.17) using central finite difference and backward

difference schemes to have

γ
un+2 − 2un+1 + 2un−1 − un−2

2h3
+ ζ

un+1 − 2un + un−1

h2

+ξ
3µn − 4µn−1 + µn−2

2h
+ g(µn) = ΠΩ(µn)[g(µn)− ρ(µn+1)], (6.19)

where h is the step size.

If γ = 1, h = 1, ζ = 1, ξ = 1, then, from equation (6.19) after adjustment, we have

Algorithm 6.12. For a given µ0, µ1, compute un+1 by the iterative scheme

un+1 = µn − g(µn) + ΠΩ(µn)

[
g(µn)− ρµn+1 +

µn−1 − 3un
2

]
, n = 0, 1, 2, . . .

which is an inertial type hybrid iterative methods for solving the inverse quasi variational inequalities

(2.7).
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Remark 6.1. For appropriate and suitable choice of the operator g, convex-valued set, parameters and

the spaces, one can suggest a wide class of implicit, explicit and inertial type methods for solving inverse

quasi variational inequalities and related optimization problems. Using the techniques and ideas of Noor

et al. [63, 64], one can discuss the convergence analysis of the proposed methods.

7 Sensitivity Analysis

In recent years variational inequalities are being used as mathematical programming models to study a

large number of equilibrium problems arising in finance, economics, transportation, operations research

and engineering sciences. The behaviour of such problems as a result of changes in the problem data is

always of concern. We like to mention that sensitivity analysis is important for several reasons. First,

estimating problem data often introduces measurement errors, sensitivity analysis helps in identifying

sensitive parameters that should be obtained with relatively high accuracy. Second, sensitivity analysis

may help to predict the future changes of the equilibrium as a result of changes in the governing system.

Third, sensitivity analysis provides useful information for designing or planning various equilibrium

systems. Furthermore, from mathematical and engineering point of view, sensitivity analysis can provide

new insight regarding problems being studied can stimulate new ideas and techniques for problem solving

the problems due to these and other reasons. In this section, we study the sensitivity analysis of the

inverse quasi variational inequalities, that is, examining how solutions of such problems change when the

data of the problems are changed.

We now consider the parametric versions of the problem (2.7). To formulate the problem, let M be

an open subset of H in which the parameter λ takes values. Let g(µ, λ) be given identity operator defined

on H ×H ×M and take value in H ×H. From now onward, we denote gλ(.) ≡ g(., λ) unless otherwise

specified.

The parametric inverse variational inequality problem is to find (µ, λ) ∈ H ×M such that

〈ρµ+ gλ(µ)− gλ(µ), ν − gλ(µ)〉 ≥ 0, ∀ν ∈ Ω(µ). (7.1)

We also assume that, for some λ ∈ M , problem (7.1) has a unique solution µ. From Lemma 3.1, we see

that the parametric inverse quasi variational inequalities are equivalent to the fixed point problem:

gλ(µ) = ΠΩ(µ)[gλ(µ)− ρµ],

or equivalently

µ = µ− gλ(µ) + ΠΩ(µ)[gλ(µ)− ρµ].
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We now define the mapping Fλ associated with the problem (7.1) as

Fλ(µ) = µ− gλ(µ) + ΠΩ(µ)[gλ(µ)− ρµ], ∀(µ, λ) ∈ X ×M. (7.2)

We use this equivalence to study the sensitivity analysis of the inverse quasi variational inequalities. We

assume that for some λ ∈ M , problem (7.1) has a solution µ and X is a closure of a ball in H centered

at µ. We want to investigate those conditions under which, for each λ in a neighborhood of λ, problem

(7.1) has a unique solution z(λ) near u and the function u(λ) is (Lipschitz) continuous and differentiable.

Definition 7.1. Let Iλ(.) be an operator on X ×M . Then, the operator gλ(.) is said to :

(a) Locally strongly monotone with constant σ > 0, if

〈gλ(µ)− gλ(ν), µ− ν〉 ≥ σ‖µ− ν‖2, ∀λ ∈M,µ, ν ∈ X.

(b) Locally Lipschitz continuous with constant ζ > 0, if

‖gλ(µ)− gλ(ν)‖ ≤ ζ‖µ− ν‖, ∀λ ∈M,µ, ν ∈ X.

We consider the case, when the solutions of the parametric inverse quasi variational inequality (7.1)

lie in the interior of X. Following the ideas of Dafermos [17] and Noor [50,54], we consider the map Fλ(µ)

as defined by (7.2). We have to show that the map Fλ(µ) has a fixed point, which is a solution of the

parametric inverse quasi variational inequality (7.1). First of all, we prove that the map Fλ(µ), defined

by (7.2), is a contraction map with respect to µ uniformly in λ ∈M .

Lemma 7.1. Let gλ(.) be a locally strongly monotone with constants σ > 0 and locally Lipschitz continuous

with constants ζ > 0 respectively. If Assumption 2.1 holds and ∀µ1, µ2 ∈ X, λ ∈M , we have

‖Fλ(µ1)− Fλ(µ2)‖ ≤ θ‖µ1 − µ2‖,

for

ρ < 1− k, k < 1, (7.3)

where

θ =
{√

1− 2σ + ζ2 + η + ζ + ρ
}

= {k + ρ} (7.4)

and

k =
√

1− 2σ + ζ2 + η + ζ. (7.5)
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Proof. In order to prove the existence of a solution of (7.1), it is enough to show that the mapping Fλ(µ),

defined by (7.2), is a contraction mapping.

For µ1 6= µ2 ∈ H, and using Assumption 2.1, we have

‖Fλ(µ1)− Fλ(µ2)‖ ≤ ‖µ1 − µ2 − (gλ(µ1)− gλ(µ2))‖

+‖ΠΩ(µ1)[gλ(µ1)− ρµ1]−ΠΩ(u2)[gλ(µ2)− ρµ2]‖

+‖ΠΩ(u1)[gλ(µ1)− ρµ1]−ΠΩ(u2)[gλ(µ1)− ρµ1]‖

≤ ‖µ1 − µ2 − (gλ(µ1)− gλ(µ2))‖

+η‖µ1 − µ2‖+ ‖gλ(µ) − gλ(µ2)− ρ(µ1 − µ2)‖

≤ ‖µ1 − µ2 − (gλ(µ1)− gλ(µ2))‖+ η‖µ1 − µ2‖

+‖gλ(µ1)− gλ(µ2)‖+ ρ‖µ1 − µ2)‖. (7.6)

Since the operator g is a locally strongly monotone with constant σ > 0 and locally Lipschitz continuous

with constant ζ > 0, it follows that

||µ1 − µ2 − (gλ(µ1)− gλ(µ2)||2 ≤ ||u1 − u2||2 − 2〈gλ(µ1)− gλ(µ2), µ1 − µ2〉+ ||gλ(µ1)− gλ(µ2)||2

≤ (1− 2σ + ζ2)||µ1 − µ2||2. (7.7)

From (7.5), (7.6), (7.7) and using the locally Lipschitz continuity of the operator gλ, we have

‖Fλ(µ1)− Fλ(µ2)‖ ≤
{
η + ζ +

√
(1− 2σ + ζ2) + ρ

}
‖µ1 − µ2‖

= θ‖µ1 − µ2‖,

where

θ = k + ρ.

From (7.3), it follows that θ < 1. Thus it follows that the mapping Fλ(µ), defined by (7.2), is a contraction

mapping and consequently it has a fixed point, which belongs to Ω(µ) satisfying the inverse quasi

variational inequality (7.1), the required result.

Remark 7.1. From Lemma 3.1, we see that the map Fλ(µ) defined by (7.2) has a unique fixed point

µ(λ), that is, µ(λ) = Fλ(µ). Also, by assumption, the function µ, for λ = λ is a solution of the parametric

general quasi variational inequality (7.1). Again using Lemma 3.1, we see that µ, for λ = λ, is a fixed

point of Fλ(µ) and it is also a fixed point of Fλ(µ). Consequently, we conclude that

µ(λ) = µ = Fλ(µ(λ)).

Using Lemma 3.1, we can prove the continuity of the solution µ(λ) of the parametric inverse quasi

variational inequality (7.1) using the technique of Noor [13,14].
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Lemma 7.2. Assume that the operator gλ(.) is locally Lipschitz continuous with respect to the parameter

λ. If the operator gλ(.) is locally Lipschitz continuous and the map λ→ PKλu is continuous (or Lipschitz

continuous), then the function u(λ) satisfying (7.2) is (Lipschitz) continuous at λ = λ.

We now state and prove the main result of this paper and is the motivation our next result.

Theorem 7.1. Let µ be the solution of the parametric inverse quasi variational inequality (7.1) for

λ = λ. Let gλ(µ) be the locally strongly monotone Lipschitz continuous operator for all µ, ν ∈ X. If the

map λ → ΠΩµ is (Lipschitz) continuous at λ = λ, then there exists a neighborhood N ⊂ M of λ such

that for λ ∈ N , the parametric inverse quasi variational inequality (7.2) has a unique solution µ(λ) in the

interior of X,u(λ) = u and u(λ) is (Lipschitz) continuous at λ = λ.

Proof. Its proof follows from Lemma 7.1, Lemma 7.2 and Remark 7.1.

8 Generalizations and Applications

In this section, we show that the quasi variational inequalities are equivalent to the strongly nonlinear

inverse variational inequalities, see Noor [36].

In many applications, the convex-valued set Ω(µ) is of the form:

Ω(µ) = m(µ) + Ω, (8.1)

where Ω is a convex set and m is a point-to-point mapping.

Let µ ∈ Ω(µ) be a solution of the problem (2.5). Then from Lemma 3.1, it follows that µ ∈ Ω(µ) such

that

g(µ) = ΠΩ(µ)

[
g(µ)− ρµ

]
. (8.2)

Combining (8.1) and (8.2), we obtain

g(µ) = ΠΩ(η(µ)+Ω)

[
g(µ)− ρµ

]
= m(µ) + ΠΩ

[
g(µ)−m(µ)− ρµ

]
.

This implies that

G(µ) = ΠΩ

[
G(µ)− ρµ

]
,

with G(µ) = g(µ)−m(µ), which is equivalent to finding µ ∈ g(µ) ∈ Ω such that

〈ρµ,G(ν)−G(µ)〉 ≥ 0, ∀ν ∈ Ω. (8.3)
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The inequality of the type (8.3) is called the inverse general variational inequality, which is special case

of the general variational inequalities, introduced and investigated by Noor [46] in 1988. It have been

shown that odd-order and nonsymmetric obstacle boundary value problems can be studied in the general

variational inequalities. For more details, see [46, 54, 73, 74]. Thus all the results proved for inverse quasi

variational inequalities continue to hold for inverse general variational inequalities (8.3) with suitable

modifications and adjustment. Despite the research activates, very few results are available.

We would like to mention that some of the results obtained and presented in this paper can be extended

for more multivalued general quasi variational inequalities. To be more precise, let C(H) be a family of

nonempty compact subsets of H. Let T , V : H −→ C(H) be the multivalued operators. For a given

nonlinear bifunction N(., .) : H×H −→ H and operators g, h : H −→ H, consider the problem of finding

µ ∈ Ω(µ), w ∈ T (µ), y ∈ V (µ) such that

〈ρN(w, y), h(ν)− g(µ)〉 ≥ 0, ∀ν ∈ Ω(µ), (8.4)

where ρ is a constant, is called the multivalued general quasi variational inequality.

For N(w, y) = (w, y), the problem (8.4) reduces to finding µ ∈ Ω(µ), w ∈ T (µ), y ∈ V (µ) such that

〈ρ(w, y), h(ν)− g(µ)〉 ≥ 0, ∀ν ∈ Ω(µ), (8.5)

is called the multivalued inverse quasi variational inequality. We would like to mention that one can

obtain various classes of inverse quasi variational inequalities for appropriate and suitable choices of the

operators g, h, and convex-valued set Ω(µ).

Note that, if N(w, y) = µ, h = I, then the problem (8.5) is equivalent to find µ ∈ Ω(µ), such that

〈ρµ, ν − g(µ) ≥ 0 ∀ν ∈ Ω(µ),

which is exactly the inverse quasi variational inequality (2.7).

Using Lemma 3.1, one can prove that the problem (8.5) is equivalent to finding µ ∈ Ω(µ) such that

g(u) = ΠΩ(µ)[g(µ)− ρ(w, y)] (8.6)

which can be written as

µ = µ− g(µ) + ΠΩ(µ)[g(µ)− ρ(w, y)].

Thus one can consider the mapping Φ associated with the problem (8.5) as

Φ(µ) = µ− g(µ) + ΠΩ(µ)[g(µ)− ρ(w, y)],

which can be used to discuss the uniqueness of the solution and to propose iterative methods for the

problem (8.5).
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From (8.4) and (8.6), it follows that the multivalued inverse quasi variational inequalities are equivalent

to the fixed problems. Consequently, all results obtained for the problem (2.7) continue to hold for the

problem (8.5) with suitable modifications and adjustments. Applying the technique and idea of this paper,

similar results can be established for solving system of inverse quasi variational inequalities considered with

appropriate modifications. The development of efficient implementable numerical methods for solving the

multivalued general quasi variational inequalities and non optimization problems requires further efforts.

Conclusion

In this paper, we have used the equivalence between the inverse quasi variational inequalities and

fixed point problems to suggest some new multi step multi-step iterative methods for solving the quasi

variational inequalities. These new methods include extragradient methods, modified double projection

methods and inertial type are suggested using the techniques of projection method, Wiener-Hopf

equations, auxiliary techniques and dynamical systems. Convergence analysis of the proposed method

is discussed for monotone operators. It is an open problem to compare these proposed methods with

other methods. Sensitivity analysis is also investigated for inverse quasi variational inequalities using the

equivalent fixed point approach. Applying the technique and ideas of Ashish et al. [4, 5], Cho et al. [12]

and Kwuni et al. [34], can one explore the Julia set and Mandelbrot set in Noor orbit using the Noor

(three step) iterations in the fixed point theory and will continue to inspire further research in fractal

geometry, chaos theory, coding, number theory, spectral geometry, dynamical systems, complex analysis,

nonlinear programming, graphics and computer aided design. This is an open problem, which deserves

further research efforts. We have shown that the inverse quasi variational inequalities are equivalent to the

strongly general variational inequalities under suitable conditions of the convex-valued set. Applications

of the fuzzy set theory [52], stochastic [6], quantum calculus, fractal, logistic map [90], fractional and

random traffic equilibrium [6] can be found in many branches of mathematical and engineering sciences

including artificial intelligence, computer science, control engineering, management science, operations

research, green energy [39] and variational inequalities. One may explore these aspects of the inverse

quasi variational inequality and its variant forms.
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