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Abstract

The need to develop queue models which could guide hospital management personnel in making policies which 
enhance prompt healthcare delivery in order to sustain patients’ interest and patronage cannot be over-
emphasized. Problem of stampede leading to loss of lives in palliative distribution centers has been very frequent 
in recent times. Traffic congestion is a common phenomenon that occurs when patients’ arrival rate surpasses the 
rate of service in any service providing facilities such as hospitals and clinics. In this research, we present two 
queuing models with the aim of applying them to solve problem of long queues in hospitals. In model 1, we apply 
the queue discipline approach of first-come first-served to derive the distribution probability that govern the 
numbers of patients’ arrival and departure in any given time interval of a single-server queuing system. We 
observe that the expected inter-arrival and expected treatment times of a patient is a continuous density function 
similar to that of a renewal process. In model 2, we used the method of Komolgorov linear differential equations 
for each value of 𝑃𝑛(𝑇) to derive the transient solution. The values of 𝑃𝑛(𝑇) is also examined as time 𝑇 tends to 
infinity (∞) and we observed that the queue system can reach its statistical equilibrium state, if 𝑃𝑛(𝑇) tends to a 
limit 𝑃𝑛, and 𝐸[𝑛] is a finite value for the distribution limit. The results from the numerical illustration show that 
the time spent in the queue, the number of patients, and the line length all increase rapidly as the traffic intensity 𝜌 
increases. It is also observed that the queue system to attain a steady-state equilibrium for sufficiently large 𝜌 < 1, 
will take a long time. Our proposed models have advantage over the existing ones in that they contain 
mathematical formulas which could guide hospital management personnel to make policies which enhance 
prompt services, sustainability of patients’ interest and patronage.

1. Introduction 

Queues are waiting lines made up of customers waiting to receive services from servers in places such as 
banks, hospitals, railway stations, airport, traffic lights, etc. A queuing process is made up of customers who 
arrive at a service facility, then wait in a queue until they are served and ultimately depart from the facility. 
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Queues are formed due to inadequate personnel to attend to customers or poor state of facilities used in serving 
customers. It is difficult to predict the rate of customers’ arrival and departure in a service facility at a given 
time in a real-life situation. There are cases where customers may decide to wait in queues until they are 
attended to by service providers, while in some other cases customers cannot afford to wait for service if they 
perceive it will take a longtime before they are attended to. The behaviors of customers are broadly classified 
into two categories: patient and impatient customers. Impatient customers are further categorized into three 
classes in Montazer et al. (1996) and Sztrik (2012).

The key components of a queue are customers, servers, patterns of customers’ arrival, the order in which 
they are served, the number of servers and how many customers the facility can accommodate per time, which 
includes those in service and those in the queue. There are two kinds of arrivals in queuing theory: single and 
bulk arrivals. Single arrival occurs when one customer comes to a service facility per time, while in a bulk 
arrival more than one customer arrives at a service facility per time. The length of the intervals is assumed to be 
independently and uniformly or identically distributed and is liken to a renewal process or a sequence of 
recurrent events as stated in Cobolat (2020). Zhang et al. (2016) states that a steady state in a queuing system 
refers to a state where the arrival rate and service rate are the same for a long period of time. It also implies to a 
scenario where the queue length is independent of time.

2. Literature Review

Several queuing models which address the problems of patients waiting in hospitals’ queues and staff 
allocation abound in literature. For examples, Worthington (1987) and Belson (1988) models discuss how 
patients visiting hospitals can be scheduled in order to reduce waiting time in queues. Similarly, Afrane and 
Appah (2014) developed a queue model which deals with minimization of waiting time in government hospitals 
in Ghana by using Anglo Ashanti hospital as a case study. A queuing model to enhance patient-flow and reduce 
waiting time in queues in health-care centers was developed in Green (2006). The impact of waiting time in 
queues by patients in a primary healthcare clinic and hospitals is reported in Lohlun (2015) and Ba et al. (2017), 
while models to minimize patients’ waiting time in general hospitals with emphasis on how to effectively 
manage queues by reducing crowd congestion and staff allocation are developed in Paul et al. (2021) and 
Mahala et al. (2023).

Mathematical models which incorporate customers’ reaction as a result of long queues are reported in 
Natvig (1975) and Rajadurai (2018). A queue system could be in any of the following state: steady state, 
transient or idle state. The idle state is an inactive period in which the server is idle because of the absence of 
customers in the facility to receive service. A transient state of a queue occurs when the arrival rate and service 
rate of customers are not equal. For example, a single-server queue model’s performance in a transient state is 
discussed in Kurmar et al. (1993), Singh et al. (2013), Singh et al. (2014) and Cobolat (2020). Queue models 
which adopt Markov probability matrix approach in determining queue performance measures are reported in 
Havi and Kerner (2007), Economou and Kanta (2008). Single-server queue models which study balking 
customers’ behaviors are reported in Natvig (1975) and were later expanded in Abou-El-Ata et al. (1992), and 
Nithya and Haridass (2016). As stated in Falin and Templeton (1997), retrial queues are queues made up of 
customers who could not assess the service of a facility but keep coming until they are attended to. The most 
commonly used queue model is the single queue with unlimited waiting space leading into an identical server S, 
Jain et al. (2014).

Retrial queue models have been applied to several networks, such as telephone systems, computer and 
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telecommunication works in Zhang and Wang (2021). The rationality behind joining or not joining a queue is 
studied in Hogarth (1987), Hassin (2016), Wang and Zhang (2013), etc. The above authors came to the 
conclusion that cost structure or reward is a factor which could influence customers’ rational in joining or not 
joining a queue. Bounded rationality of customers in single-server queuing models which consider seen and 
unseen settings is studied in Huang et al. (2013) and Li et al. (2016). Lie et al. (2017) developed a queue which 
has many servers with multiple objective functions when using matrix approach. Chai et al. (2019), later 
expanded Lie et al. (2017) model by considering a situation where the customer does not have all the relevant 
information about the quality of the service of the queue system. Huang and Chen (2015), Ren and Huang 
(2018) and Ogumeyo and Emenonye (2023) remarked that customers tend to join queues based on their 
previous experiences if they cannot evaluate the quality of a queue system.

Emphasis on fast, efficient and smooth healthcare delivery began to gain attention in the 1990s due to 
advanced technology. One of the ways to solve the problems of long queues in healthcare centers is to schedule 
doctors and nurses to match patients’ pattern of arrivals, group them and treat them according to the nature of 
their health challenges (Mahala et al., 2023). According to Belson (1988), poor commitment to duty by hospital 
staff can cause long queues or delay in healthcare delivery. Wang and Zhang (2021), and Lohlum et al. (2015) 
opined that insufficient human and material resources, lack of proper coordination and management of medical 
personnel and material resources are the causes of long queues in hospitals where patients have to spend a lot of 
time before receiving required services. Quality healthcare is closely connected to timely assessment of 
healthcare. Relevant queue models can be used to reduce waiting time in healthcare centre. Queue models can 
also be used to estimate capacities of future requirements in terms of human and material resources during 
natural disasters such as Covid-19. A queue model to estimate capacity levels of waiting spaces in hospitals and 
other healthcare sectors by making policies which enhance effective allocation of nurses, doctors and hospital 
beds is reported in Paul et al. (2021).

The first-come first serve queue discipline is the most popular rule in queuing systems except in hospitals 
and other healthcare centers where priority rule in cases of emergencies where patients’ lives are at risk (Paul et 
al., 2021). In emergency cases, a service in progress can be interrupted due to arrival of patients in critical 
conditions in a hospital. The causes of patients waiting in long queues in healthcare centre are enumerated in 
Mahala et al. (2023). Waiting time and utilization of queuing models in healthcare centers are reported in 
Sudesh et al. (2017).  Long queues in hospitals can delay treatment of patients by doctors which ultimately 
prolong their suffering, or leads to their death Paul et al. (2021). 

The research aims at:

(i) Identifying shortcomings of existing queue models related to healthcare centers. 

(ii) Formulating queue models that could be used to determine the mean arrival rate of patients, mean 
service rate of patients, the probability of having a specific number of patients in a healthcare 
system which minimizes the cost of service.

The proposed models are extension of earlier works of Paul et al. (2021) and Mahala (2023).  

Mahala, et al. (2023) presents a queuing model to reduce Out Patient Department waiting time in hospital 
operations. Their model does not contain mathematical formulas that could be used to determine the optimum 
values of transient solution, statistical equilibrium and stationary probabilities of a queue system. Likewise, 
Paul et al. (2021) developed a queuing model to optimize patient-waiting time in a public hospital in India lack 
these essential formulas. 
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Our proposed models have advantage over the existing ones in that they contain mathematical formulas that 
could be used to determine the optimum values of transient solution, statistical equilibrium and stationary 
probabilities of a queue system. This could guide hospital management personnel to make policies which 
shorten queues due to prompt services and enhance the sustainability of patients’ interest and patronage. This in 
effect, leads to high revenue generation and profit maximization. Another advantage of these two models is the 
prevention of stampede which could lead to loss of lives such as was experienced in Ibadan, Abuja and Okija 
(all in Nigeria) during the distribution of palliatives in December, 2024. 

3. Problem Definition

The major problem plaguing healthcare centers in Nigeria is inability to access prompt services and 
improved traffic flow of patients. Research has shown that the problem of patients including pregnant women 
who wait for hours or days in healthcare centers in order to receive medical services is caused by the following 
factors: 

(i) Lack of commitment to duty by hospital staff (doctors and nurses).

(ii) Insufficient human and material resources.

(iii) Lack of proper coordination and management of medical personnel and material resources.

(iv) Lack of relevant queue models to estimate capacities of future required medical personnel and 
waiting spaces in hospitals to enhance effective allocation of nurses, doctors and hospital beds.

The approach adopted in handling queue system in a firm can either hinder or enhance customers’ 
patronage. The four factors listed above lead to formation of long queues in hospitals where patients have to 
spend a lot of time waiting before receiving required services. The consequences of have long queues in 
healthcare centers lead to the problems which this research aims to address: 

(i)  Long queues  

(ii) Patients’ dissatisfaction and low patronage.

(iii) Poor revenue generation.

(iv) Stampede.

4. The Mathematical Model

Model Assumption and Mathematical Notations 

The Model assumptions are: 

(a) The population consists of n patients seeking treatment in a hospital.

(b) Patients’ arrival at the healthcare centre is randomly distributed. 

(c) Patients join the queue to register for treatment irrespective of the queue length. 

Mathematical Notations

∅ =  Average number of patients arriving for treatment in a given time interval. (i.e. arrival rate),
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1
∅ =  Mean time between the arrivals of patients,

𝑙 =  The interval length [𝑇, 𝑇 + ℎ] of time,  

𝑓(𝑡) =  Time interval between two successive arrival or departure of patients from the treatment centre,

𝜓 =  Average number of patients being treated per time,

1
𝜓 =  Mean time between departures of patients from the treatment centre. 

Model 1: Description

In our proposed model, the distribution probability that govern the numbers of patients’ arrival and 
departure in any given interval depends on the length of the interval, rather than the starting point. The model 
has exponentially distributed inter-arrival time, with parameter ∅, exponentially distributed service time, with 
parameter 𝜓, one server and unlimited capacity. The queue’s rule being observed is first-come first-served, 
where ∅ denotes the average patients’ arrival rate while 𝜓 is the average rate of treatment of patients or service 

rate. The expected inter-arrival time and expected treatment time to treat one patient are 
1
∅ and 

1
𝜓 respectively. 

The random arrivals of patients in the healthcare centre for treatment indicates that the arrivals are based on an 
interval length of time, i.e., [𝑇, 𝑇 + 𝑡]. While the probability distribution of inter-arrival times describes a 
continuous density function in which the patient arrival is called renewal process. Taking 𝑓(𝑡) as the probability 

density function (pdf) for the interval time between successive arrivals of two patients at the health centre, 
1
∅ is 

the mean time between arrival of patients and ∅ is arrival rate per unit time. Similarly, 𝜓 is the mean number of 

patients being treated per time (service rate), while 
1
𝜓 is the mean time between departures of patients from the 

healthcare centre.

Figure 1a – Figure 1d show the four major types of queuing system in literature. Figure 1a is a single queue 
with only one server available to attend to customers. Figure 1b is a single queue with multiple servers in 
parallel lines while Figure 1c is multiple queues with multiple servers. Figure 1d is a single queue with multiple 
servers in series. Each of the queuing system has entry point where customers arrive at the facility and exit 
point where customers who have been served exit the facility. What differentiates one queue from another is the 
manner in which the customers line up to be served. 
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Figure 1: Four types queuing system.

Model 1: Formulation

From the mathematical symbols defined in this section, we can evaluate ∅ from the density function 𝑓(𝑡) 
by taking the mathematical expection of 𝑡. Hence, 

∞

0
𝑡 𝑓(𝑡)𝑑𝑡 =

1
∅ .                                                                            (1)

Equation (1) is the meantime arrival of patients. The assumption that patient’s arrival is random (that is no fixed 
pattern) corresponds to Poisson negative exponential distribution. Hence, we have 

𝑓(𝑡) = ∅𝑒―∅𝑡,    for 𝑡 ≥ 0,                                                          (2)

where 𝑒 = 2.7182, the mean and variance of the distribution are 
1
∅ and 

1
∅2 , respectively. 

The probability that no patient was treated in the healthcare centre in the interval [0,𝑇] is equivalent to the 
probability that the first patient arrived for treatment after time 𝑇. This can be stated mathematically as 

𝑃[𝑡 ≥ 𝑇] =
∞

0
∅𝓁―∅𝑑𝑡 = 𝓁―∅𝑇.                                                               (3)
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The conditional probability that no patient came for treatment in the interval [0, 𝑇 +1] given that no patient 
came for treatment in the time interval (0, 𝑇) can be defined as stated in Equation (4). 

𝑃[𝑡 ≥ 𝑇 + 1]
𝑃[𝑡 ≥ 𝑇] = 𝓁―∅(𝑇+1)

𝓁―∅𝑇 = 𝑃[𝑡 ≥ 𝑙].                                                        (4)

We observe that Equation (4) depends only on the value of 𝑙 and it implies that the probability of no treatment 
for a specified time interval (𝑇, 𝑇 + 𝑙) will be the same even if there was treatment in the time interval (0, 𝑇) or 
at time 𝑇 and thereby ‘renews’ the arrival process. If there are 𝑛 patients who arrive for treatment in (0, 𝑇) 
interval, then the 𝑛 patients’ times of arrival are identically and independently distributed in (0, 𝑇) time interval 
since the interval times will be exponentially distributed. By applying the assumption of exponential interval 
times 𝓁∅𝑙, we have its Taylor’s power series expansion as stated in Equation (5). 

𝑃
no arrival in 
any interval
of lenght 𝑙

= 𝓁―∅𝑙 = 1 ― ∅𝑙 + ( ―∅ℎ)2

2! + ( ―∅ℎ)3

3! .                                          (5)

The term 1 ― ∅𝑙 in Equation (5) has a larger value compare to the remaining terms. Hence, 1 ― ∅𝑙 can be used 
as an approximate probability in equation (5) when 𝑙 is very small. Therefore, Equation (5) can be rewritten as 

𝑃
no arrival in 
any interval
of lenght 𝑙

= 1 ― ∅𝑙.                                                           (6)

Following the same line of argument, the probability of having one patient arriving in the health centre is 

𝑃
one patient arrival

in an interval
of lenght 𝑙

= ∅𝑙.                                                         (7)   

Suppose the density function for patient’s inter-arrival is exponentially distributed in Equation (2), it therefore 
means that the total time 𝑥 for density function in 𝑛 consecutive patients’ arrival will assume a gamma 
distribution, (See Ogumeyo and Emonenye, 2023). Hence, Equation (2) could be stated as:

𝐺(𝑥) = ∅(∅𝑥)𝑛―1𝓁―∅𝑥,   for 𝑥 ≥ 0,                                                     (8)

where 𝑥 is the total of 𝑛 independent patients obtained from the density function in Equation (2). Hence the 
total interval for n consecutive patients’ arrival can be stated as: 

𝑃
𝑛 arrivals in a 

consecutive interval
length ≤ 𝑇

=
𝑇

0
𝐺(𝑥)𝑑𝑥 = 1 ―

𝑛―1

𝑗=0
(∅𝑇)𝑗𝓁―∅𝑇 .                              (9)

Equation (9) can be proved by repeated application of integration by parts technique. Since the probability 
distribution of patients’ arrival in the healthcare centre in any interval time 𝑇 has Poisson’s distribution 
properties, Equation (9) can be rewritten as. 

𝑃
𝑛 patients arrival

in any interval
 time 𝑇

= (∅𝑇)𝑛𝓁―∅𝑇

𝑛! ,   for 𝑛 ≥ 0.                                          (10)

Since Equation (10) is a Poisson distribution, the expectation and variance can be stated as 

𝐸[𝑛/𝑇] = ∅𝑇  and  𝑉𝑎𝑟 [𝑛/𝑇] = ∅𝑇.                                                    (11)
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It therefore follows from equation (9) and (10) that 

𝑃
total interval for

𝑛 consecutive arrivals
≤ 𝑇

= 𝑃
𝑛 number of patients 

who arrive in any 
interval 𝑇 ≥ 𝑛

.                                   (12)

Similarly, a probability distribution of patient treatment time can be derived. Suppose 𝐺(𝑡) is the density 
function of 𝑡 interval of time spent to treat a patient where successive treatment times are identically and 
independently distributed for a particular physician. Then the mean treatment time representing a continuous 
density function is 

∞

0
𝑡𝐺(𝑡)𝑑𝑡 =  

1
𝜓 .                                                                          (13)

The symbol 𝜓 is the treatment rate per time. In most cases, the service time in queue theory is assumed to be 
exponentially distributed as earlier stated in model’s assumption. Hence, Equation (13) can be stated as: 

𝐺(𝑡) = 𝜓𝓁―𝜓𝑡,   𝑡 ≥ 0.                                                                 (14)

Applying the assumption stated in Section 2, suppose a patient treated at time 𝑡 was evaluated at time 𝑡 + 𝑙, the 
probability of not completing the treatment in the interval length 𝑙 can be stated as 

𝑃[service not completed in interval length of time 𝑙] = 𝓁―𝜓𝑙.                                 (15)

Therefore, for a small positive number 𝑙 > 0, the probability that a physician did not complete a treatment in an 
interval length of time 𝑙 can be written as 

𝑃 treatment not completed 
in an interval length of time 𝑙 ≅1 ― 𝜓𝑙.                                           (16)

While the probability that treatment is completed in an interval length of time 𝑙 is 

𝑃 treatment is completed in an 
interval length of time 𝑙 = 𝜓𝑙.                                                 (17)

Suppose there is only one physician with an exponential distribution time density in equation (15) and let the 
probability that n patients are in the healthcare centre be 𝑃𝑛(𝑇) at time 𝑇. Similar to other preceding section, we 
are to evaluate approximate probabilities and ignore relatively small quantities. Hence, we assume only one 
patient was treated during a small interval of time 𝑙 > 0. In the case of n patients in the healthcare centre at time 
𝑇 + 𝑙, we consider two possibilities. Either there were 𝑛 patients and none of them was treated or there were 
𝑛 + 1 patients in the system and one was treated in 𝑙 small interval of time length. 

Consequently, we have

𝑃𝑛(𝑇 + 𝑙) = (1 ― 𝜓𝑙)𝑃𝑛(𝑇) + (𝜓𝑙)𝑃𝑛+1(𝑇).                                             (18)

The first term in RHS of equation (18) represents the probability approximation that no patients was treated in 
the time interval length 𝑙 with 𝑛 patients in the healthcare centre at time 𝑇 while in the second term, there were 
𝑛 + 1 patients and one was treated. Equation (18) can be rearranged to produce Equation (19) as follows: 

𝑃𝑛(𝑇 + 𝑙) ― 𝑃𝑛(𝑇)
𝑙 = ―𝜓𝑃𝑛(𝑇) +𝜓𝑃𝑛+1(𝑇).                                                (19)

By differentiating Equation (19) and letting 𝑙→0, we have 

𝑑𝑃𝑛

𝑑𝑇 = ―𝜓𝑃𝑛(𝑇) +𝜓𝑃𝑛+1(𝑇),      for 1 ≤ 𝑛 < 𝑀.                                       (20)
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Equation (20) holds exactly because all the small relatively terms ignored in the previous steps vanish as 𝑙 
tends to zero (𝑙→0). By a similar procedure, we can state that: 

𝑑𝑃𝑚

𝑑𝑇 = ―𝜓𝑃𝑚(𝑇),     for 𝑛 = 𝑀.                                                              (21)

The differential Equations in (20) and (21) have a unique solution which can be stated as: 

𝑃𝑛(𝑇) = (𝜓𝑇)―𝑛𝓁―𝜓𝑇

(𝑚 ― 𝑛)! ,  for 𝑛 ≥ 1.                                                         (22)

For 𝑛 = 0, Equation (22) becomes 

𝑃0(𝑇) = 1 ― ∑𝑀
𝑛=1 𝑃𝑛 (𝑇).                                                                (23)

The distribution in Equations (22) and (23) are referred as truncated Poisson distributions. If the last patient to 
be treated is Mth patient, then the sum of time 𝑥 that the patient spends in the queue system, plus the treatment 
time will have a gamma density distribution denoted by the sum of variables will have exponential distribution, 
as stated in Ogumeyo and Emunefe (2022). Thus 

𝐻(𝑥) =
𝜓(𝜓𝑥)𝑀―1𝓁𝜓𝑥

(𝑀 ― 1)! ,         for 𝑥 ≥ 0.                                                             (24)

Hence, the mean and the variance of equation (24) can be stated as 

𝐸(𝑥) =
𝑀
𝜓                                                                               (25) 

and 

Var(𝑥) =
𝑀
𝑥2 .                                                                                  (26) 

Equation (24), (25) and (26) denote gamma distribution for a small interval time 𝑙 > 0, we can apply binomial 
probability theorem to obtain a small time interval l since the physicians work independently. Thus, the 
probability that none of the patients departed from the healthcare centre can be mathematically stated as: 

P[none of the 𝑛 pateints departed] = (1 ― 𝑛𝜓𝑙)𝑛 = 1 ― 𝑛𝜓ℎ.                                (27)

The probability that one of the patients departed the healthcare centre using equation (27) can be stated thus 

𝑃[one of the patients departed]≅𝑛𝜓𝑙.                                                (28)

Equation (28) is justified by the fact that when 𝑙 > 0 is very small, we restrict ourselves to only two chances: 
either there was no departure or one departure. This is because the possibilities of more patients departing the 
queue system have intangible probabilities. Another reason for this is that, when the healthcare centre has 𝑛 
patients in its queue system at time 𝑇 + 𝑙, either there were 𝑛 patients and none departed or there were  𝑛 + 1 
patients and one departed are the only changes that can occur at time 𝑇, (see Ogumeyo and Emunefe, 2022). 

The above explanation can be expressed mathematically as: 

𝑃𝑛(𝑇 + 𝑙) = (1 ― 𝑛𝜓𝑙)𝑃𝑛(𝑇) + (𝑛 + 1)𝜓𝑙𝑃𝑛+1(𝑇).                                  (29)

We arrange Equation (29) by taking the term 𝑃𝑛(T) to the LHS. Divide both sides the LHS by 𝑙 and allowing 𝑙 
tends to zero, we have

𝑑𝑃𝑛

𝑑𝑇 = ―𝑛𝜓𝑃𝑛(𝑇) + (𝑛 + 1)𝑃𝑛+1(𝑇),     0 < 𝑛 < 𝑀.                                    (30)                                                                      
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By following the same procedure, we have 

𝑑𝑃𝑀

𝑑𝑇 = ―𝑀𝜓𝑃𝑀(𝑇),  when 𝑛 = 𝑀.                                                    (31)

By using Binomial distribution probability, the complete solution of Equations (30) and (31) can be stated thus: 

𝑃𝑛(𝑇) = 𝑀
𝑛 (𝓁―𝜓𝑇)𝑛(1 ― 𝓁―𝜓𝑇)𝑀―𝑛,    for 0 < 𝑛 ≤ 𝑀.                             (32)

The mean of the distribution of the queue system using equations (30)-(32) can be stated as 

E 𝑛
𝑇

= 𝑀𝓁―𝜓𝑇.                                                                        (33𝑎)

While the variance is

Variance 𝑛
𝑇

= 𝑀𝓁―𝜓𝑇(1 ― 𝓁―𝜓𝑇).                                                 (33b)

Model 2: Mathematical Formulation 

Model description: In model 2, we use Kolmogorov differential equations to derive the transient solution, 
the statistical equilibrium and the stationary probabilities of the single-server model described in Model 1. 
Specifically, we assume that

exponential density of interarrival time = 𝜆𝑒―𝜆𝑡

exponential density of service time =  𝜇𝑒―𝜇𝑡                                           (34)

𝜆 =  patients’ arrival rate per time, 

where  E[lnterval of Busy Period] = 𝐸[Time patients spent in the queue system]

𝜇 =  treatment rate of patients per time,  𝜌 = 𝜆/𝜇 traffic intensity.

 The number of patients, n in the queue system at any given time consists of patients waiting in the queue 
including those currently in service. Suppose we denote 𝑡 = 0 as the time the queue system started, then 𝑃𝑛(𝑇) 
can be defined as

𝑃𝑛(𝑇) ≡  the chances that n patients are currently queuing in system at time 𝑇.                  (35) 

The value of 𝑃𝑛(𝑇) is determined by the number of patients in the queue system at time t = 0. Suppose 𝑘 > 0 is 
a very small length of time where 𝑛 greater than 0  is the number of patients in the queue system at Time 𝑇 + 𝑘, 
then similar to  the  procedure in Model 1, we consider only the chances that there were either 𝑛 ― 1, 𝑛 or 𝑛 + 1 
patients at time 𝑇 while any other chance  is relatively negligible. Hence, for 𝑛 greater than zero,   we have 

Pn(𝑇 + 𝑘) ≡ (𝜆𝑘)(1 ― 𝜇𝑘)𝑃𝑛―1(𝑇) + (1 ― 𝜆𝑘)(1 ― 𝜇𝑘)𝑃𝑛(𝑇) + (𝜆𝑘)(𝜇𝑘)𝑃𝑛(𝑇)

+ (𝜆𝑘)(𝜇𝑘)𝑃𝑛(𝑇) + (1 ― 𝜆𝑘)(𝜇𝑘)𝑃𝑛+1(𝑇)        (for small 𝑘)                      (36)

The first term on the right hand side represents the arrival of one patient and no patient departed the system 
when there are 𝑛 ― 1 patients in the queue at time 𝑇. The second and third terms in right hand side of (36) 
represent the events: no patient arrives and no patient departs, and of one arrival and a departure when there are 
n patients in the queue at time 𝑇 respectively. The last term denotes the event of no arrival and one departure 
when there are 𝑛 + 1 patients in the queue system at time 𝑇. The expression “ ≡ " in (36) is a sign of 
approximation which can become “=” by adding probability terms with coefficient 𝑘𝑖, where 𝑖 ≥ 2.  The 
probability 𝑃𝑛(𝑇) that the system has exactly 𝑛 patients either waiting for treatment or in treatment process at 
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time 𝑡 satisfies the Kolmogorov differential equation in (36). If we shift the term 𝑃𝑛(𝑇) to the LHS of Equation 
(36), divide through by 𝑘, and letting 𝑘→0, we have

𝑑𝑃𝑛

𝑑𝑇 = 𝜆𝑃𝑛―1(𝑇) ― (𝜆 + 𝜇)𝑃𝑛(𝑇) + 𝜇𝑃(𝑛+1)(𝑇)   for  𝑛 > 0.                                       (37)

Since the terms we ignored in Equation (36) become zero as 𝑘→0, the expression in equation (37) is exact and 
not an approximation. Hence, for 𝑛 = 0, we have

𝑑𝑃0

𝑑𝑇 = ―𝜆𝑃0(𝑇) + 𝜇𝑃1(𝑇)  for 𝑛 = 0.                                                       (38)

Before we can solve linear differential equations in (37) and (38) for each value of 𝑃𝑛(𝑇), we need to know 
how many patients (𝑛) are in the queue system at time 𝑡 = 0. This leads us to arrive at a transient solution since 
its value solely depends on the value of 𝑇. We can also examine the values of 𝑃𝑛(𝑇) as 𝑇 tends to infinity (∞). 
If 𝑃𝑛(𝑇) approaches a limiting value 𝑃𝑛, and 𝐸[𝑛] is finite for this limiting distribution then, the queue system 
is said to have attained its statistical equilibrium. The 𝑃𝑛 values obtained shows that if the number of patients in 
the system at any time 𝑡 is specified with respect to the probability distribution 𝑃𝑛, then for any 𝑘 > 0, 𝑃𝑛 is also 
the probability that 𝑛 patients are in the queue system at time 𝑡 + 𝑘. The 𝑃𝑛 value can also denote the value of 
the limit of an arbitrarily long period of time in which the queue consists of 𝑛 patients provided:

             𝜌 ≡
𝜆
𝜇 < 1.                                                                                 (39)

The stationary probabilities 𝑃𝑛 are common features in single-server (𝑀/𝑀/1) and the symbol 𝜌 in (39) 
represents the traffic intensity. By using the rule which states that each 𝑑𝑃𝑛/𝑑𝑇 must equal 0, for 𝑃𝑛 solution to 
be independent of 𝑇, the equilibrium solution, 𝑃𝑛(𝑇) ≡ 𝑃𝑛 can be determined for all 𝑇. (See Ogumeyo and 
Emunefe, 2022). Hence, in order to evaluate the 𝑃𝑛 values, we need to set the derivatives in (37) and (38) equal 
to 0, to get:

            0 = 𝜆𝑃𝑛―1 ― (𝜆 + 𝜇)𝑃𝑛 +𝜇𝑃𝑛+1   for 𝑛 = 1, 2, 3, …                                                        (40)

            0 = ―𝜆𝑃0 + 𝜇𝑃1   for 𝑛 = 0.                                                                            (41)

Starting with (41), the system of equations in (40) and (41) can be solved recursively. Thus,

𝑃1 = 𝑃0
𝜆
𝜇 = 𝑃0𝜌 .                                                                                    (42)

If we proceed to (40) for 𝑛 = 1, 2, …, we have

𝑃𝑛 = 𝑃0𝜌𝑛.                                                                                 (43)

We can easily verify that 𝑃𝑛 in (43) does satisfy (40).  Given Equation (39), 

∞

𝑛=0
𝑃𝑛 = 𝑃0

∞

𝑛=0
𝜌𝑛 =

𝑃0

1 ― 𝜌 = 1.                                                                 (44)

Equation (44) implies that 𝑃0 = 1 ― 𝜌, hence

𝑃𝑛 = (1 ― 𝜌)𝜌𝑛  for  𝑛 = 0,1,2,….                                                           (45)



S. A. Ogumeyo, E. Enoyoze, G. A. Eriyeva, K. O. Iyenoma, F. C. Opone and S. A. Uriri

http://www.earthlinepublishers.com

448

Equation (45) denotes a geometric distribution, hence 

   𝐸
number of

patients
in system

= 𝐸[𝑛] =
𝜌

1 ― 𝜌 =
𝜆

𝜇 ― 𝜆 ,        var[𝑛] =
𝜌

(1 ― 𝜌)2 .                              (46)

Equation (46) holds for 𝑃[𝑛 ≥ 𝑁] = 𝜌𝑁.

We observe that the probability distribution in (45) rely only on the value of 𝜆/𝜇 = 𝜌, which is the traffic 
intensity ratio. Hence 𝜌 is the measure of effectiveness or utilization factor of the queue system since 𝜌( = 1 ―
𝑃0) is the time interval in which the physician is busy.

Derivation of Mean of Queue Length

In order to derive the mean of the queue length, we first all recall that

     Queue length =  number of patints in the queue system               if 𝑛 = 0
number of patients in the queue system ― 1     if 𝑛 > 0.                        (47) 

Hence,

            𝐸[Queue length] = 0.𝑃0 +
∞

𝑛=1
(𝑛 ― 1)𝑃𝑛 =

∞

𝑛 = 0
𝑛𝑃𝑛 ―

∞

𝑛=1
𝑃𝑛                                 (48)

 = 𝐸[𝑛] ― (1 ― 𝑃0) =
𝜌2

1 ― 𝜌 =
𝜆2

𝜇(𝜇 ― 2)  .

Derivation of the Length of Idle and Busy Periods

Next step is to study the intervals of time in which the physician is idle which normally starts when one 
treatment terminates and end when a new patient arrives. The inter-arrival times of patients and the interval of 
the idle period of the physician have the same distribution. That is, exponentially distributed with mean = 1/𝜆. 
Suppose the time interval 𝑇 is long enough that its expected values can be fully utilize, then the physician will 
be idle for 𝑇𝑃0 = 𝑇(1 ― 𝜌) time units, and [𝑇(1 ― 𝜌)/(1/𝜆) = 𝜆𝑇(1 ― 𝜌)] will be the number of different idle 
periods in time 𝑇. This implies that 𝜆𝑇(1 ― 𝜌) is also the number of different busy periods in time 𝑇 since idle 
and busy periods alternate, and 𝜌𝑇 is the sum ofthe time interval in which the physician is busy. 

Hence,

          𝐸[interval of busy period] =
𝜌𝑇

𝜆𝑇(1 ― 𝜌) =
1

𝜇 ― 𝜆                                               (49)

and 

E number of patients
treated per busy period = 𝜇E interval of

busy period =
1

1 ― 𝜌 .                                          (50)

Equations (49) and (50) hold for any service time distribution, (see Ogumeyo and Emunefe, 2022).

Next, we consider the density probability for the time a patient waits in the queue system, which consists of 
the length of time a patient stays in the queue and the time he spend in treatment process. Assuming the queue 
system is in a state of statistical equilibrium, such that when a new patient arrives, there is a probability 𝑃𝑛 
given by Equation (45) of finding 𝑛 patients in the system ahead of him/her and the first come, first served 
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queue discipline is observed, then the total time the patient stays in the queue system will be the sum of 𝑛 + 1 
identically and independently distributed exponential random variables. Hence, it will have a gamma density

     ℎ(𝜔)
𝜇(𝜇𝑦)𝑛𝑒―𝜇𝑦

𝑛!    for 𝑦 ≥ 0.                                                              (51)

Equation (51) is similar to what we have in Equation (48), hence the time interval that a patient who comes at 
an arbitrary time stays in the queue system is given by 

     ℎ(𝜔) =
∞

𝑛=0
(1 ― 𝜌)𝜌𝑛 𝜇(𝜇𝜔)𝑛𝑒𝜇𝜔

𝑛!                                                                (52)

= 𝜇(1 ― 𝜌)𝑒―𝜇(1―𝜌)𝑤   (which is exponentially distributed).

While mean time in system is

       𝐸[time in the queue system] = 𝐸[𝜔] =
1

𝜇(1 ― 𝜌) =
1

𝜇 ― 𝜆 .                                              (53)

Recall that  𝐸[time in line] = 𝐸[time in system] ―𝐸[service time], hence 

                  𝐸[time in line]   =
1
𝜇

𝜌
1 ― 𝜌

=
𝜆

𝜇(𝜇 ― 𝜆).                                                          (54)

From the above analysis of Equations (49)-(54), it implies that for fixed value of 𝜌, the mean time a patient 
stays in the queue system and in the queue inversely vary with the treatment rate 𝜇. Difference equations of the 
steady-state in equations (40) and (41) still hold for 𝑛 = 0, 1,…, 𝑀 – 1, but the equation for 𝑛 = 𝑀 is 

               0 = 𝜆𝑃𝑀―1 ― 𝜇𝑃𝑀.                                                                           (55)

While the solution corresponding to the values of 𝑛 = 0, 1, ….., 𝑀 is 

𝑃𝑛 =

1 ― 𝜌
1 ― 𝜌𝑀+1 𝜌𝑛     for 𝜆 ≠ 𝜇
1

𝑀 + 1                        for 𝜆 = 𝜇.
                                                       (56)

This also implies that, when 𝜆 < 𝜇 and 𝑀→∞,  𝑃𝑛 in Equation (56) agrees with Equation (35). By applying 
simple algebraic manipulations, we can be prove that for 𝜆 ≠ 𝜇

             𝐸
number of

patients
in system

= 𝐸[𝑛] =
𝜌

(1 ― 𝜌)
1 ― (𝑀 + 1)𝜌𝑀 + 𝑀𝜌M+1

1 ― 𝜌𝑀+1                                      (57)

=
𝜌

1 ― 𝜌 ―
(𝑀 + 1)𝜌𝑀+1

1 ― 𝜌𝑀+1   for 𝜆 ≠ 𝜇.

We notice that when 𝜆 < 𝜇, the mean number of patients in the queue system is less than that of infinite queue 
length in Equation (46). By following the same procedure, we can prove that for 𝜆 = 𝜇,

               𝐸
number of

patients
in system

= 𝐸[𝑛] =
𝑀
2    for 𝜆 = 𝜇.                                                            (58)
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Special case of patients who arrive when the system is already full

Determining the length of time a patient stays in a queue system is a sensitive aspect of queuing theory. 
Patients who arrive at the health facility when there is no vacant space in the system do not enter the system due 
to lack of space. This implies that the patient waste no time in the system. Hence, the mean time spent in the 
system is defined as either all customers who come regardless of whether they enter, or only to those patients 
who are allowed to enter. In this case the latter is adopted, since in most cases attention is focused on only those 
who actually enter the system. Hence, for a patient who arrive at an arbitrary time to join the system, with first 
come, first served queue discipline being observed, we can state that

              𝐸 time in
system ≡ 𝐸[𝑤] =

𝜌
𝜇(1 ― 𝜌)

1 ― 𝜇𝜌𝑀―1 + (𝑀 ― 1)𝜌𝑀

1 ― 𝜌𝑀 +
1
𝜇                                      (59)

=
1

𝜇(1 ― 𝜌) ―
𝑀𝜌𝑀

𝜇(1 ― 𝜌𝑀)     for  𝜆 ≠ 𝜇,

and 

𝐸 time in
system ≡ 𝐸[𝑤] =

1
𝜇  .

𝑀 + 1
2   for 𝜆 = 𝜇.                                                     (60)

Numerical Illustration 

Different operating characteristics such as expected number of patients in line, expected line length and 
time sent in line in a single-server queuing (M/M/1) system for different values of traffic intensity 𝜌 and service 
rate 𝜇 are displayed in Table 1 as follows:

𝜇 = 10 𝜇 = 20

Traffic 
Intensity 

𝜌

Probability 
of Server 

Idle 
= 1 ― 𝜌

Expected 
number 

in 
system 

=
𝜌

1 ― 𝜌

Expected 
Line Length 

= 𝜌2

1 ― 𝜌
𝜆

Time in 
systems

Time 
in 

line
𝜆

Time in 
system

Time in 
Line

0.1 0.9 0.11 0.01 1 0.11 0.01 2 0.06 0.01

0.3 0.7 0.43 0.13 3 0.14 0.04 6 0.07 0.02

0.5 0.5 1.00 0.50 5 0.20 0.10 10 0.10 0.05

0.7 0.3 2.33 1.63 7 0.33 0.23 14 0.17 0.12

0.8 0.2 4.00 3.20 8 0.50 0.40 16 0.25 0.20

0.9 0.1 9.00 8.10 9 1.00 0.90 18 0.50 0.45

0.95 0.05 19.00 18.05 9.5 2.00 1.90 19 1.00 0.95

0.99 0.01 99.00 98.01 9.9 10.00 9.90 19.8 5.00 4.95

0.999 0.001 999.00 998.00 9.99 100.00 99.90 19.98 50.00 49.95

𝜆 =  rate of patients’ arrival per  time,     𝐸[length of Busy Period] = 𝐸[Time in System]

𝜇 =  rate of treatment per time, and 𝜌 = 𝜆/𝜇
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5. Results and Analysis

In model 1, the inter-arrival time distribution of patients in a healthcare centre is being described in 
Equations (1) to (12). The model is based on the assumption that the time intervals between patients’ arrivals 
and the treatment time have identical and independent distribution, denoting a density function that is 
continuous and the patients’ arrival is a renewal process. This enables us to evaluate approximate probabilities 
of arrival time and ignoring very small-time quantities. Hence, in a very small-time interval, 𝑙 > 0, it can be 
stated that at most only a single patient can be treated (i.e. one departure). When there are 𝑛 patients at time 
𝑇 + 𝑙 in the system, we consider only two probabilities: either there were n patients in the queue system and 
none have left or there were 𝑛 + 1 patients and one has left the facility within the very small length of time 
𝑙 > 0. This gives the results in Equations (13) to (18). We observe that Equation (19) has exact probability, and 
not approximate. This is because all the terms with very small probabilities that were overlooked in Equation 
(18) by letting 𝑙→0 disappear. Equations (25) and (26) show the mean and variance of the total time a patient 
spent in the queue including the treatment time using Gamma distribution, respectively. Moreover, Equations 
(28) to (31) are justified by the fact that whenever an interval of time 𝑙 > 0 is very small, we are restricted to 
only two possible chances: either no patient left the system or one patient left the system since the probability 
that more patients will leave the system is very small and negligible. Equations (33) contain the mean and 
variance of the Binomial distribution of the service or treatment rate of patients.

Table 1 shows that as the value of 𝜌 increases, the mean number of patients, the queue length, the time 
spent in the system, and the time in the queue [using Equations (46), (48), (53) and (54)] stated above, all 
increase rapidly. For sufficiently large 𝜌 < 1, these quantities can be made arbitrarily large. Although it will 
take the system a long time to reach steady-state equilibrium. For a specified treatment rate 𝜇, when 𝜌 is small, 
most of the mean times a patient spends in the system is caused by the average service time 1/𝜇; but as the 
arrival rate 𝜆 increases (intensity 𝜌 increases) most of the expected time spent in the system is caused by 
waiting time in the queue. 

6. Conclusion

In this paper, we presented two queuing models aimed at solving problem of long queues in hospitals. In 
model 1, we apply the queue discipline approach of first-come first-served to derived the distribution 
probability that govern the numbers of patients’ arrival and departure in any given interval, where ∅ denotes the 
average patients’ arrival rate while 𝜓 is the average rate of treatment of patients or service rate. We observed 
that the distribution probability of inter-arrival time and treatment time of patients describes a continuous 
density function similar to that of a renewal process if the expected inter-arrival and expected treatment times of 
a patient are known. In model 2, we used the method of Komolgorov linear differential equations (37) and (38) 
for each 𝑃𝑛(𝑇), to derive the transient solution. The values of 𝑃𝑛(𝑇) is also examined as 𝑇 tends to infinity (∞) 
and we observed that the queue system can reach its statistical equilibrium state, if 𝑃𝑛(𝑇) tends to a limit, say 
𝑃𝑛, and 𝐸[𝑛] is finite for the limit 𝑃𝑛.  The resulting 𝑃𝑛 values (i.e. stationary probabilities) imply that if the 
number of patients in the system at any time 𝑡 is given with respect to the probability distribution 𝑃𝑛, then for 
any 𝑘 > 0, 𝑃𝑛 is also the probability that n patients are in the system at time 𝑡 + 𝑘. We also observed that the 
equilibrium solution 𝑃𝑛(𝑇) ≡ 𝑃𝑛, can be obtained for all T, by equating each 𝑑𝑃𝑛/𝑑𝑇= 0, if the solution 𝑃𝑛 is 
truly independent of 𝑇. (See Ogumeyo and Emunefe, 2022).

Table 1 shows that as the value of 𝜌 increases, the mean number of patients, the queue length, the time 
spent in the system, and the time in the queue [using Equations (46), (48), (53) and (54)] stated above, all 
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increase rapidly. For sufficiently large 𝜌 < 1, these quantities can be made arbitrarily large. Although it will 
take the system a long time to reach steady-state equilibrium. For a specified treatment rate 𝜇, when 𝜌 is small, 
most of the mean times a patient spends in the system is caused by the average service time 1/𝜇; but as the 
arrival rate 𝜆 increases (intensity 𝜌 increases) most of the expected time spent in the system is caused by 
waiting time in the queue. Our proposed models have advantage over the existing ones in that they contain 
mathematical formulas that could be used to determine the optimum values of transient solution, statistical 
equilibrium and stationary probabilities of a queue system. These values could guide hospital management 
personnel to make policies which shorten queues due to prompt services and enhance the sustainability of 
patients’ interest and patronage. This in effect, leads to high revenue generation and profit maximization. 
Another advantage of these two models is the prevention of stampede which could lead to loss of lives such as 
was experienced in Ibadan, Abuja and Okija (all in Nigeria) during the distribution of palliatives in December, 
2024.
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