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Abstract

In this paper, we introduce and investigate a new third order recurrence sequence so called generalized
co-Narayana sequence and its two special subsequences which are related to generalized Narayana
numbers and its two subsequences. There are close interrelations between recurrence equations of
and roots of characteristic equations of generalized Narayana and generalized co-Narayana numbers.
We present Binet’s formulas, generating functions, some identities, Simson’s formulas, recurrence

properties, sum formulas and matrices related with these sequences.

1 Introduction: Generalized Narayana and co-Narayana Numbers

The generalized Tribonacci numbers
{W,(Wo, Wi, Wair, s,t) }n>0
(or {Wh}n>0 or shortly {W,},>0) is defined as follows:
Wp =1rWy 1+ sWy_o +tW, _3, Wo=a, Wy =bWy=c¢, n>3 (1.1)
where Wy, Wy, Wy are arbitrary complex (or real) numbers and 7, s and ¢ are real numbers with ¢ # 0.

The sequence {W),},>0 can be extended to negative subscripts by defining

S T 1
W_n = —¥W7(n71) - ;Wf(n72) + ng(nf:a)

for n = 1,2,3, ... when t # 0. Therefore, recurrence (1.1) holds for all integers n.
For r, s, t satisfying Eq. (1.1), the generalized co-Tribonacci numbers

(Vo (Yo, Y1, Y2; —s, —7t, %) b0
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(or shortly {Y;,}n>0) is defined as follows:

Y, =—sY, 1 —rtYy_o+t*Y, 5, Yo=dYi=eYo=/f n>3 (1.2)
i.e.,

Y,=rY, 1+s1Yn o+ t1Y,_3, Yo=d,Yi=¢Yo=f n>3
where Y, Y7, Ys are arbitrary complex (or real) numbers and 71 = —s, 51 = —rt, t; = t.

The sequence {Y}, },>0 can be extended to negative subscripts by defining

—rt -8 1
Yoo = — 5 V00~ @Yot gY@
S1 1 1
= _EY—(n—l) - HY—(n—Q) + EY—(n—?))

for n =1,2,3,... when t # 0. Therefore, recurrence (1.2) holds for all integer n. For more information on

generalized Tribonacci and co-Tribonacci numbers, see [§].

Note that we can easily use and modify the results given for r,s,¢ in [8] by substituting r1, s1,t; for

r,s,t and we will do this in this paper.

There are close interrelations between roots of characteristic equations of generalized Tribonacci and
generalized co-Tribonacci numbers, see [8, Lemma 17.|: If «, 3,7 are the roots of characteristic equation

of {W,} which is given as
3 2

22 —rz"—sz—t=0,
and if 61,02, 05 are the roots of characteristic equation of {Y;,} which is given as

Y —ry? — sy —t1 =y + syt +rty — 12 =0,

then we get

01 = 677
92 = 048’
93 = Qary.

There are also close connections and relations between recurrence equations of generalized Tribonacci and

generalized co-Tribonacci numbers, see, for example, Lemma 32 in [8].
In this paper, we consider the caser =1, s =0,t =1sothatm = —s=0,85 = —rt = —1,t; = t> = 1.

In the next section, we also use the notation r = 0,s = —1,t =1 for r1 =0, s1 = —1, t; = 1, to use
results in the paper [8]. Now, in this section, for the case r =1, s = 0, t = 1 we present some well known

results.
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The Narayana numbers was introduced by the Indian mathematician Narayana in the 14th century,
while studying the problem of a herd of cows and calves, see [1,5] for details. Narayana’s cows problem is
a problem similar to the Fibonacci’s rabbit problem which can be given as follows: A cow produces one
calf every year and beginning in its fourth year, each calf produces one calf at the beginning of each year.
How many calves are there altogether after 20 years? This problem can be solved in the same way that
Fibonacci solved its problem about rabbits (see [2]|). If n is the year, then the Narayana problem can be
modelled by the recurrence Ny 13 = Ny 42+ Ny, with n >0, Ny =0, N7 =1, Ny = 1, see [1]. The first few
terms are 0,1,1,1,2,3,4,6,9,13,19, 28..., (the sequence A000930 in [6]). This sequence is called Narayana

sequence (also called Fibonacci-Narayana sequence or Narayana’s cows sequence).

Recently, there has been considerable interest in the Narayana sequence and its generalizations,see for

example Soykan |7 and the references given therein].

Note that Narayana sequence (or Fibonacci-Narayana sequence or Narayana’s cows sequence) named
after a 14th-century Indian mathematician Narayana. In literature, there is a sequence which is also called
Narayana sequence (named after Canadian mathematician T. V. Narayana (1930-1987)) and is defined
by the numbers (the sequence A001263 in [6])

v =5 () (:2)

where 1 < k < n. These type of Narayana numbers (in fact, a g-analogue of them) were first studied by
MacMahon [3, Article 495] and were later rediscovered by Narayana [4]. It is well known that for any
positive integer n,

Cn =Y N(nk)

k=1

n

2n
n

4n+2 C

where C,, are Catalan numbers and given by C,, = n%q( iz COn

where Cy = 1.

) and satisfies the recurrence Cp 11 =

The purpose of this chapter is to study a generalisation of Narayana sequence (Narayana's cows
sequence). We define and investigate the generalized Narayana sequence and we deal with, in detail,

one special case besides Narayana sequence which we call it Narayana-Lucas sequence.

In this chapter, we consider the case r = 1, s = 0,¢ = 1. A generalized Narayana sequence {W), },>0 =
{W,,(Wo, W1, Wa) }n>0 is defined by the third-order recurrence relations

Wy, =Wp_1+ Wph_3 (1.3)
with the initial values Wy = co, W1 = ¢1, Wa = ¢9 not all being zero.
The sequence {W),},>0 can be extended to negative subscripts by defining

Wop==-W_(n2)+W_3)
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for n =1,2,3, .... Therefore, recurrence (1.3) holds for all integer n.

Generalized Narayana sequence and its special cases have been studied by many authors, see for

example Soykan |7 and the references given therein].

As {W,} is a third-order recurrence sequence (difference equation), its characteristic equation (cubic

equation) is

B2 -1=0.

The roots «, 3,~ of characteristic equation of {W,,} are given as

where

There are the following relations between the roots of characteristic equation:

1/3 1/3
Lo(2, /3Ly (29 /3L
37\ 52" V108 54\ 108
1/3 1/3
N I ET e 31
37%\ 54 108 Y 51 108
1/3 1/3
1,22, /3 e 31
1,229, /31 29 /31
3 54 7\ 108 54\ 108

~1+1iV3
2

w =

= exp(2mi/3).

atft+y = 1,
af+ay+py = 0,
afy = 1.

(1.4)

The sequence {W,,} can be expressed with Binet’s formula. Using the roots of characteristic equation

and the recurrence relation of W,,, Binet’s formula of W,, can be given as follows:

Theorem 1. For all integers n, Binet’s formula of generalized Narayana numbers is given as follows:

W, =

where

pra” p2B" p3Y"

@=B)a- " B-aB-7_ G-a)n-5
Aja™ 4+ AyB" 4 Asy",

p1 = Wao—(B+y)Wi+ ByWo,

p2 =
ps =

Wa — (a+5)W1 + ayWy,
Wy — (a + ,B)Wl + afWy

http: //www. earthlinepublishers.com
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and
A D1 _ Wy — (B 4+ v)W1 + ByWy
(a=p)a=n) (a=B)a=n)
o (aWZ + Oé(—l + Oé)Wl + Wo)
B a?+3 ’
Ay — P2 _ Wa = (a+ )W + anWo
(B—a)(B=") (B—a)(B—)
_ (BWa 4+ B(=14 B)W1 + W)
B*+3 ’
Ay = P3 _ Wa—(a+B)W1 + oWy
(y—a)(y—5) (y—a)(v=5)
_ (Wa 4 (=1+9)W1 + Wo)
7’ +3 ’
Proof. Set r =1, s =0,t =1 in [8, Theorem 3 (a)|. O
Next, we give the ordinary generating function § Wpz™ of the sequence W,,.
n=0

o0
Lemma 2. Suppose that fw,(z) = >, Wy2™ is the ordinary generating function of the generalized
n=0

o0
Narayana numbers {Wy,}n>0. Then, > Wyz" is given by

n=0

> Wo + (W1 — W, Wy — W1)22
S Wt = 0+ (W 0)z + (Wa 12"

1—z—23
n=0

Proof. Set r =1, s =0,t =1 in [8, Lemma 9.|. O

Two special cases of the sequence {W,} are the well known Narayana sequence {N,}n>0 and
Narayana-Lucas sequence {U,, },,>0. Narayana sequence { Ny, }n>0, Narayana-Lucas sequence {Uy, }n>0 are

defined, respectively, by the third-order recurrence relations
Nn+3:Nn+2+Nna NOZOaNl :]—7N2: 17 (15)

and
Un+3 - Un+2 + Una UO = 37 Ul = 17 U2 =1 (16)

The sequences { Ny, }n>0, {Un}n>0, can be extended to negative subscripts by defining
Non = =N_(n-2) + N-(n-3)

and
U ==U_(n-2)+U_(n_3

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 605-638



610 Yiiksel Soykan

for n = 1,2, 3, ... respectively. Therefore, recurrences (1.5)-(1.6) hold for all integer n.

For all integers n, Binet’s formula of Narayana and Narayana-Lucas numbers (using initial conditions

(1.5) and (1.6) in Theorem 1) can be expressed as follows:

Theorem 3. For all integers n, Binet’s formulas of Narayana and Narayana-Lucas numbers are

anJrl 5n+1 ,.Yn+1
N, = + +
(a=B)la=7) B-a)B-7) (G-a)y—H)
an+2 n+2 n+2
g S s

a?2+3 [2+3 4243

and
Un = an_'_ﬁn_{_,yn’

respectively.

Lemma 2 gives the following results as particular examples (generating functions of Narayana and

Narayana-Lucas numbers).

Corollary 4. Generating functions of Narayana and Narayana-Lucas numbers are

> z

E annzig
1l—2z—2z

n=0

and
o
3—-2
Z Un2" = - 3
1—2z—=2
n=0
respectively.

We can give a few basic relations between {U,} and {N,}.

Lemma 5. The following equalities are true:

(a) Uy, = 3Nnis — 5Nnts + 2Npio.
(b) U, = —2N,43+2Nni2 4+ 3Nai1.
(¢) Un = 3N,41 — 2N,

(d) U, = Ny, + 3N,_s.

(e) 31N = —3Un+4 + Un+3 + llUn+2.

http: //www. earthlinepublishers.com
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(f) 31N, = —2Up43 4+ 11Up12 — 3Up1.
(8) 31N, = Uy ig — 3Unsq — 2U,.
(h) 31N, = 6Upsq — 2Un + Wp_1.

(i) 31N, =4U, + 9U,,_1 + 6U,,_o.

2 Generalized co-Narayana Numbers

Ifr=1,s=0,t=1, then we get r1 = —s=0, sy = —rt = —1, t; = t*> = 1. From now on, throughout
the paper, we also use the notation r = 0,s = —1,t = 1 for ;1 =0, s; = —1, t; = 1 and we consider the
case r = 0,s = —1,t = 1 to use results in the paper [8|.

In this section, we define and investigate a new sequence and its two special cases, namely the
generalized co-Narayana, co-Narayana and co-Narayana-Lucas numbers. The generalized co-Narayana
numbers

{Vn (Y0, Y1, Y2;0, =1, 1) }nxo

(or shortly {Y;,}n>0) is defined as follows:
Yn:_ n—2+Yn—37 }/():d7Y1:€7Y2:f7 n23 (21)
where Yj, Y1, Yo are arbitrary complex (or real) numbers with real coefficients.

The sequence {Y}, },>0 can be extended to negative subscripts by defining
Yo, = Yf(nfl) + Yf(nf?:)

for n =1,2,3,... when t # 0. Therefore, recurrence (2.1) holds for all integer n.

The first few generalized co-Narayana numbers with positive subscript and negative subscript are given
in the following Table 1.

Remark 6. In this paper we will extensively use the paper [8]. Note that in the notation of [8], here we
haver =1,s=0,t=1andry =0, s; = —1, t1 = 1. For simplicity, we can use the result of [8] by taking

and replacing r =0,s = —1,t = 1.

As {Y,} is a third-order recurrence sequence (difference equation), its characteristic equation (cubic
equation) is
P+y—1=0.

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 605-638
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Table 1: A few generalized co-Narayana numbers

n Y, Y .

0 Yo Yo

1 Y1 Yo+ Y2

2 Yo Yo+ Y1+ Y3
3 Yo— Y1 2Yo+Y1+ Y,
4 Y1 — Y 3Yo+ Y1 + 27,
5 Yi-Y+Ys 4Yy + 2Y7 + 3Y,
6 Yo—-2Y1+ Y, 6Yy + 3Y7 + 4Y5
7 Yo — 2Y3 9Yp +4Y1 + 6Y>
8 3Y1 — 2Y, 13Yy + 6Y71 + 9Y,
9 3Yy, — 2V 19Y) + 9Y7 + 13Y5

10 3Yp —3Y; —2Ys 28Yp + 13Y; 4 19Y,
11 5Y; —2Yy —3Ys 41Yp + 19Y; + 28Y5
12 Y, —3Yy+5Ys  60Yp +28Y; + 41V,
13 5Y,—8Y; +Ys 88Yy+41Y; + 60Y,

The roots 61, 02,03 of characteristic equation of {Y;,} are given as

1/3 1/3
o — (1, /31 R
L 108 2 108 ’

1/3 1/3
0, — Lo /38 et /8L
2T Yy 108 2 108 ]

where

—1+iv3
w=——

5 = exp(2mi/3).

There are the following relations between the roots of characteristic equation:
01+ 62+ 65 =0,

0102 + 0103 + 0203 = 1,
010505 = 1.

http: //www. earthlinepublishers.com
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Note that there are an important relation between 61,602, 03 and «, 3, :

01 = 577
02 = alga
03 = an.

The sequence {Y,,} can be expressed with Binet’s formula. Using the roots of characteristic equation

and the recurrence relation of Y,,, Binet’s formula of Y}, can be given as follows:

Theorem 7. For all integers n, Binet’s formula of generalized co-Narayana numbers is given as follows:
P10t n P2ty p3ty

(01— 02)(01 — 03) ~ (02— 01)(02 —03) (05— 01)(03 — 62)

= A107 + Ax05 + As0%,

Y, =

where

p1 = Yo — (02 + 03)Y1 + 0203Y0, p2 = Yo — (61 + 63)Y1 + 6163Y0, p3 = Yo — (61 + 02)Y1 + 0102Y0,

and
A = p1 _ Y- (02 4 03)Y1 + 0203,
(01— 62)(61 — 63) (601 — 62)(61 — 63)
_ (01Y2 + 01011 + Yp)
o —291 +3 ’
Ay = D2 _ Yo — (61 +03)Y1 +60105Y
(62 — 601)(02 — 63) (62 — 61)(02 — 03)
_ (02Y2 + 0202Y1 + V)
- —205 + 3 ’
Ay = p3 _ Yo — (01 4 02)Y1 + 6102Y)
(03 — 01)(03 — 62) (03 — 61)(03 — 62)
_ (03Y2 + 63031 + Yp)
a —203 + 3

Proof. For the proof, take r = 0, s = —1, ¢t = 1 in [8, Theorem 3 (a)] or 11 = 0,51 = —1,t; = 1 in [8,
Theorem 19 (a)]. O

o0
Next, we give the ordinary generating function > Y;,2" of the sequence Y,.
n=0

[ee]
Lemma 8. Suppose that fy,(z) = > Y,2" is the ordinary generating function of the generalized
n=0
o0
co-Narayana numbers {Y,}n>0. Then, Y Y,z" is given by
n=0

iyzn:yo—FYlZ—F(YQ—FYb)ZZ
vt " 1+ 22— 23 '

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 605-638



614 Yiiksel Soykan

Table 2: The first few values of the special third-order numbers with positive and negative subscripts.
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 -11 1 -2 0 3 -2 -3 5 1 -8
1 2 3 4 6 9 13 19 28 41
0o -2 3 2 -5 1 7T -6 -6 13 0 -19 13
5 6 10 15 21 31 46 67 98 144

Proof. Set r =0, s = —1,¢t=11in [8, Lemma 9] or r; = 0,1 = —1,¢; = 1 in |8, Lemma 24|. O

In this paper, we define and investigate, in detail, two special cases of the generalized co-Narayana
numbers {Y,,} which we call them co-Narayana and co-Narayana-Lucas numbers. co-Narayana numbers
{M,,}n>0 and co-Narayana-Lucas numbers {S,, },,>0 are defined, respectively, by the third-order recurrence

relations

Mn+3 = —Mpyq1+ Mn, My = O,Ml = 1,M2 =0, (22)
Sn+3 = —Op+1+ S, S0=3,51=0,5 = -2. (2.3)

The sequences { My, }n>0 and {Sy}n>0 can be extended to negative subscripts by defining
M_, = M—(n—l) + M—(n—S)a
S_n = S_(no1) +S_(n-3)

for n = 1,2, 3, ... respectively. Therefore, recurrences (2.2) and (2.3) hold for all integers n.

Next, we present the first few values of the co-Narayana and co-Narayana-Lucas numbers with positive

and negative subscripts.

For all integers n, Binet’s formula of co-Narayana and co-Narayana-Lucas numbers (using initial

conditions (2.2) and (2.3) in Theorem 7) can be expressed as follows:

Theorem 9. For all integers n, Binet’s formulas of co-Narayana and co-Narayana-Lucas numbers are

Hn—f—l Hn—i—l 0n+1
Mn — 1 4 2 + 3
(01 —02)(01 —03) (02 —01)(02 —03) (65 —61)(63 — 62)
9?+2 9;l+2 9g+2

T 20,43 2043 20,43

and
Sy =07 + 05 + 65,

respectively.

http: //www. earthlinepublishers.com
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Lemma 8 gives the following results as particular examples (generating functions of co-Narayana and

co-Narayana-Lucas numbers).

Corollary 10. Generating functions of co-Narayana and co-Narayana-Lucas numbers are

z
n _
> Myt = 11223
n=0
iSz” - 3+ 22
n 14222
n=0

respectively.

3 Connections between N,, U, and M,, S,

Sy can be given as follows.

Lemma 11. For all integers n, we have the following formula for Sy:

Sp = 07 +05+03

Proof. Use [8, Lemma 30]. O
We can present the relations between M,, S, and N, U, as follows.

Lemma 12. For all integers n, we have the following formulas:

(a) Sp=3(U2—Us,).
(b) Mn = N—n—l and M_n = Nn—l'

(c) S, =U_,, and S_,, = Uy,

Proof. Use [8, Lemma 32]. O

4 Some Identities of Generalized co-Narayana Numbers

In this section, we obtain some identities of generalized co-Narayana, co-Narayana and co-Narayana-Lucas

numbers. First, we can give a few basic relations between {M,,} and {S,}.

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 605-638
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Lemma 13. The following equalities are true:

(a) Sp = 4Mpiq+ Mz + 5Mpia.
(b) Sn= Mpy3+ Myyo+4Mp1.

(€) Sn= Mo+ 3Mps1 + M,.

(d) S = 3Mps1 + M1,

(e) Sp=3M,_s — 2M,_,.

(£) 31M, = 4814 + 6845 + 13Sp40.
(€) 31My = 65,15 + 9Snsa + 4Sns1.
(h) 31M, = 95,12 — 25,41 + 65,
(i) 31My = =2, 11 — 35 + 9Sn_1.

(J) 31M,, = —3S,, +11S,_1 — 25,,_2.

Proof. Set Gy, = M,,, H, = S,, and r =0,s = —1,t = 1 in |8, Lemma 36]. a
Note that all the identities in the above lemma can be proved by induction as well.
Next, we give a few basic relations between {M,,} and {Y},}.
Lemma 14. The following equalities are true:
(a) (Y3 + Y3 + Y5 + Y2Ya + YoVF + YoY? — 2V, — 3Yo"iYa)M,, = (Y — V1Yo — YoV1)V,ia + (
YZ + YoYs — YoY1) Y1 + (Y — YoYa)Y,.

(b) (Y3 + Y2+ Y5 + YPYs 4 YoV3 + YoY? — 2Y3Y) — 3YoY1Yo) M, = (Y5 + YoYa — Yo¥1) Yy + (Y7 —
YE+Y1Ye — YoYo + YWY, + (YE — V1Yo — YoY1) Y, 1.

(c) (Y34 Y2 +Y3+ Yo+ YoV + YoV —2Y2Y, — 3YoViYo) M, = (Y2 = Y@ + V1Yo — YoYa + YoV1) Y, +
(=YZ+ Y7 —V1Ys — YoYa)Y, 1 + (Y& + YoYa — YoY1)Y,, o

(d) Yy = (Yo + Yo)Myya + YoMyi1 + (Ya + Vi + Yo) M.
(e) Y, = }/E)Mn+1 +Y1 M, + (YQ + Yb)Mnfl-

(f) Yn = Yan + }/QMn—l + YE)Mn—Q-

http: //www. earthlinepublishers.com
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Proof. Set Wy, =Y, G, = M, and r =0, s = —1,t = 1 in [8, Lemma 37|. O
Now, we present a few basic relations between {5, } and {Y,,}.
Lemma 15. The following equalities are true:
(@) (Y3 + Y2+ Y3+ Yo + YoY3 + Yo7 — 2Y2Y) — 3YoY1Y2)S, = (3YF + Y + 2YpYa — 3Yo Y1) Yaga +
(3Y12 +2Y1Ys — 3YYs — 2}/62 + QYE)YI)YTH—I + <Y22 -+ Y12 + 3Y02 —3Y1Y, — 4%}/1)Yn

(b) (Y3 + Y3+ Y3 + Y22 + YoY? + YoY7? — 2Y2Y; — 3YpY1Ys)S, = (3Y2 + 2Y1Ys — 3YoYe — 2V +
2YoY1)Yoi1 + (3YZ — 2V — 3Y1Ys — 2YYa — YoY1)Y,, + (3YZ + Y2 + 2YYs — 3Yo Y)Y, 1.

(¢) (Y3 + Y3+ Y3 + Y32Ya + YoY2 + YoV — 2Y2Y: — 3YpY1Ya)S, = (—2YF + 3YE — 3V Y — 2YoYs —
YoY1) Y+ (3Y2 —2Y2+2Y2 —2Y1 Yo +5Y Yo —5Y Y1) Yyo1 4+ (3Y2 —2YF +2Y1 Yo —3Y Yo +2Y V1) Vi o

(d) 31V, = (6Y2 + 9Y] + 4Yy)Snia + (9Ya — 2V + 6Y))Sns1 + (4Y3 + 61 + 13Y5)S,.
(e) 31V, = (9Y5 — 2] + 6Y))Sns1 + (—2Ya — 3Y7 + 9Y0) Sy, + (6Y + 9Y7 + 4Y)S_1.

(f) 31Y,, = (—2Y3 — 3Y7 4+ 9Y)) Sy, + (—3Y2 + 11Y] — 2Y()Sp—1 + (9Y2 — 2Y7 4 6Y5)Sp—2.

Proof. Set W), =Y,,, H, =Sy, and r =0, s = —1, t =1 in [8, Lemma 38]. O
We can present identities between N,,,U,, and M,, S, by using Lemmas given above.

Lemma 16. For all integers n, we have the following formulas:

(a) 31M_,, = U, 41 — 3U, — 2U,,_1.

(b) S_p = 3Nny1 — 2N,

(c) 25, = (3Npt1 — 2N,)? — (3N2pt1 — 2Nay,).
(d) U_, = Mp42+3Mp41 + M,

() 31N_,_1 = 9S,12 — 2Sn 41 + 685,

(f) 3IN_, = 65,42 + 95,41 + 45,.

Proof. Use Lemmas 5, 12, 13. O

Now, we present some identities of generalized co-Narayana numbers and its special cases.

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 605-638
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Lemma 17. Suppose that {X,}n>0 = {Xn(Xo, X1, X2) }n>0 ts also defined by the third-order recurrence

relations

Xpn=-Xp2+Xn3 (41)

1.€.,

Xn+3 = T An+l + Xn

with the initial values Xg, X1, Xo not all being zero and
Xon=X_(n-1) +X_(n-3)

so that (4.1) is true for all integer n.

Then the following equalities are true:

(a)
(XoXZ 4+ X2X4 + X35 — XoXo X4 — 2X1 X0 X3)V = 1 X2 + @2 Xnt1 + 3 X0
where
a1 = (X§ — XoX2)Ya2 + (XoX3 — X1 X9)Y1 + (X7 — X1 X3)Y)
¢ = (XoX3 — X1 X0)Yo + (X3 — XoX0)V1 + (X1 X4 — X0 X3)Yp
q3 = (X22 — X1 X3)Yo + (X1 Xy — XoX3)V1 + (X:% — X0 X41)Yo
(b)
(YoY3' + YPYa + Y5 — YoYoVy — 2Y1YaY3) My, = ¥t + G5Yn41 + GoYa
where
u=Y-VY: - YoV,
g5 = Y3+ YoYs — VoY1
@ = Y7 —YoYs
(c)
Yo = ¢rMpy2 + gsMpy1 + qoMp
where
g =Y2+Yp
3 =Y

g =Y+YI +Y)
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(d)
(YoY3 + VY2 + Y5 — YoYaVi — 2Y1Y2Y3) S, = quoYnr2 + quYos1 + q12Y
where
qi0 = 3YZ + Y2 +2YYs — 3YpYy
qu1 = 3Y72 — 2YF7 + 2Y1Ys — 3YYs + 2YpY)
qi2 = YZ + Y2 +3Y2 - 3Y1Ys — 4YpY;
(e)
31Y, = q135n+2 + q14Sn+1 + @155,
where
q13 = 6Y2 + 9Y] +4Y)
q1a = 9Y2 — 2Y1 +6Y)p
q15 = 4Y2 + 6Y; + 13Y)
Proof.

(a) Writing
Yio=qg x Xpjo+q X Xpp1 +q3 x X,

and solving the system of equations

Yo = g1 xXo+qxX1+qxXp
Y = g1 xXs+qxXo+q3x Xy
Yo = g1 xXy+q x X3+q3xXo

we find the required identity.
(b) Replace Y,, and X,, with M,, and Y,,, respectively in (a).
(c) Replace X,, with M, in (a).
(d) Replace Y, and X,, with S,, and Y;,, respectively in (a).

(e) Replace X,, with S, in (a). O
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5 Simson’s Formulas of co-Narayana Numbers

The following theorem gives Simson’s formula of the generalized co-Narayana numbers {Y,,}.

Theorem 18 (Simson’s Formula of Generalized co-Narayana Numbers). For all integers n, we have

Yope Yo1 Y, Y i Y Y Y1 Yo
Yor1. Yo Yo=Y Yo Y | =11 Yo Yo+ Yp
Yo Y,1 Yo Yo Y1 Yoo Yo o+Yy Yo+ Y1 +Y)
Proof. Set W,, =Y, and r =0, s= —1,t =1 in |8, Theorem 33]|. a

The previous theorem gives the following results as particular examples.

Corollary 19. For all integers n, Simson’s formula of co-Narayana and co-Narayana-Lucas numbers are

given as
Mn+2 Mn—l—l Mn
M1 M, M, = -1
Mn Mn—l Mn—2
Sn+2 Sn+1 Sn
Sn+1 Sn Snfl = _317
Sn Sn—l Sn—2
respectively.
Proof. Set Y,, = M,, and Y,, = S,, in Theorem 18, respectively. O

6 Recurrence Properties of Generalized co-Narayana Numbers

The generalized co-Narayana numbers Y,, at negative indices can be expressed by the sequence itself at

positive indices.

Theorem 20. Forn € Z, we have

1
Y_n = an — SnYn + 5(35 - SQn)Yb

Proof. Set Wy, =Y, U, =S, and r =0, s= —1,t =1 in |8, Theorem 39]. a

As special cases of the above Theorem, we have the following Corollary.
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Corollary 21. For n € Z, we have

(a)
M_p, = —M?2 + May — My oMy, — 3Myiq M,

(b)
S, = %(Sﬁ — Son).

Proof. Take r =0, s = —1,t =1, and N,, = M,, and U,, = S, respectively, in [8, Corollary 42| or set
Y, = M,, and Y,, = S,,, respectively, in Theorem 20. O
The last Corollary can be written in the following form by using Lemma 12.

Corollary 22. For n € Z, we have

(a)
Np—1 = —M2 + My — My oMy, — 3My 1 M.
(b) ,
U, = 5(531 — Son).
Proof. Use Lemma 12 and Corollary 22. O

n n n n n n
7 Sum Formulas > Yy, > Yor, > Yopi1, D Yop, D0 Yook, D) Yoory and
k=0 E=0 k=0 _ k=0 k=0 F=0_
Generating Functions )~ Y, 2", > " Y5,2", > " Yo 12", > Y 2",
S o Yo0n2", > Y og,412" of Generalized co-Narayana Numbers

Next, we present sum formulas of generalized co-Narayana numbers

Theorem 23. Forn > 0, we have the following sum formulas for generalized co-Narayana numbers:
n
(a) z Y =— n+2_Yn+1_Yn+)/é+Y1+2%-
k=0
n
(b) Y Yop = £(—2Yap40 — Yoni1 — Yau +2Y2 4 Y7 4 4Yp).
k=0

n
(€) X Yopp1 = 3(—Yaonto + Yoni1 — 2Yap + Y2 + 2Y7 + 2Y)).
k=0
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(d) kio Y =Yoot Yo 42V, — Yo — Y — Y.

(e) kZZ:O Yook = +(Yoon1+2Y 9, + Yoo, 0 —2Y — Y1 — Yp).
(f) ké) Y op41 = %(Y—Zn —Y on 1 +2Y 9,2 — Yo+ Y] —2Y)).
Proof.

(a) Set W, =Y,,, r=0,s=—1,t =1and z =1 in [8, Theorem 62 (a) (i].

(b) Set W,, =Y, r=0,s=—1,t =1 and z =1 in [8, Theorem 62 (b) (i)].
(c) Set W,, =Y,,r=0,s=—1,t=1and z =1 in |8, Theorem 62 (c) (i)].
(d) Set W, =Y,,r=0,s=—1,t =1and z=11in [8 Theorem 62 (d) (i)].
(e) Set W), =Y,,,r=0,s=—1,t=1and z =1 in [8, Theorem 62 (e) (i)|.

(f) Set W, =Y,,, r=0,s=—1,t=1and z =1 in [8, Theorem 62 (f) (i)]. O

From the last Theorem, we have the following Corollary which gives sum formulas of co-Narayana
numbers (take Y;, = M,, with My =0, M; = 1, My = 0).

Corollary 24. For n > 0, co-Narayana numbers have the following properties.
n
(@) > My =—Mpi2 — Mpi1 — My + 1.
k=0
n
(b) > Moy, = 3(—2Mapi2 — Maniy — Mo, + 1).
k=0
n
(€) 3 Mopy1 = 3(—Maonyo + Mopi1 — 2May, +2).
k=0
n
(d) Z M_y=M_nyo+M_ i1 +2M_, — 1.
k=0
n
(e) Z M—Qk = %(M*QTL*l + 2M72n + M72n72 - 1)
k=0

n
(£) > M_opp1=3(M_gn — M_gp_1 +2M_9,_5 +1).
k=0
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Taking Y, = 5, with Sp = 3,51 = 0,52 = —2 in the last Theorem, we have the following Corollary

which gives sum formulas of co-Narayana-Lucas numbers.

Corollary 25. For n > 0, co-Narayana-Lucas numbers have the following properties:

(3) 3 5= ~Suea = Susr = Sy +4.

(b) kio Sok = 5(—282n42 — San41 — S2n + 8).
(c) ]éo Sok+1 = 5(—Sont2 + Song1 — 252, + 4).
(d) éo S = Sonyz+ S pp1 +25 , — 1.

(€) X S_ok=3(S—2n—1 425 2, + S_on—2 +1).
k=0

(f) > S_okt1=3(S-2n — S—on—1+25 2n_2 —4).
k=0

Next, we give the ordinary generating function of special cases of the generalized co-Narayana numbers
{Ymn-l—j }

Corollary 26. The ordinary generating functions of the sequences Y, Yon, Yont1, Y_pn, Y_on, Y_oni1 are

given as follows:

(a) (|z| < minf{|61] 7", [02) 71,1031} = |62 = |05 ~ 0.826031).

iyzn: (Yo +Y2)2® + Y12 + Y0
ot " -3+ 2241 '

(b) (|z| < min{|61]| 72,022, |03] 2} = |62| % = |03] % ~ 0.682327).

iY oo MY+ Y9)2 + QW + Vo) + Yo
Lo P+ 12+1 '

(c) (|z| < min{|6:]72,162] 72,0572} = |62] 2 = |65] % ~ 0.682327).

iy z”:(YO+Y2)z2+(Yo+Y1)z+Y1
n=0 e *Z3+Z2+22’+1 '
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(d) (|2| < min{|61], |02, 105]} = |01] ~ 0.682327 ).

o0
Y122 - Yoz - Y,
Syt = 12° = Yoz = Yy
24+z2-1
n=0

(e) (|z| <min{|61]*,|02]%,]605]°} = |61]* ~ 0.465571).

ZOO n V22— (V1 +Y3)z— Y
Y_an = 3 3 .
= 224+ 2z4+2z—1

(£) (|z| < min{|61]?,|62]*, |05} = |61]* ~ 0.465571).

iy Zn:(YI_YE)>22—(Y2—Y1+%)Z—Y1
2 —2n+1 JER Y B .

Proof. W, =Y, and r =0,s = —1,¢t =1 in [8, Corollary 67.]. d
Now, we consider special cases of the last corollary.

Corollary 27. The ordinary generating functions of special cases of the generalized co-Narayana numbers

are given as follows:

(a) (|z| < minf{|61]7",[02] 7", 10371} = |62 = |05 ~ 0.826031).

z
Mpyz" = ——
;:4:) n* 234+ 2241
iSZ” B 2243
=" —23 4+ 2241

(b) (|z| < min{|6:]72,|62]72, |05] 2} = |02] 2 = |05]* ~ 0.682327).

Msy,2" =
; 2 B2t 2 41
is oo 22 +42+3
v T 242241

(c) (|z| < min{|6:]72,162] 72,1052} = |62] 2 = |65] % ~ 0.682327).

oo
z+1
Mop 12" = :

is o 2243z
vt 2ntl =B 242241
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(d) (|2| < min{|61], |02, 105]} = |01] ~ 0.682327 ).

0 2
M_ " = =
00

ZS Zn: 2z —3

= o 2 42z-1

(e) (|z| <min{|61]*,|02]%,]05]°} = |61]* ~ 0.465571).

= —z
M _9,2" =
;:0 2 2B+22242-1
is N 222422 -3
_on2" = :
vt n 224222421

(£) (|z| < min{|61]?,162]*, |05} = |61]* ~ 0.465571).

0 2
2 +z-1
M_ "=
nz% 1% 242224217
e o]
-322 — 2
S_ "= :
T;O 1% 22 +22242—-1

From the last corollary, we obtain the following results for special cases of z.

Corollary 28. We have the following infinite sums .

1
(a) = B
— o 9
—on 9
(b) =3
e
— on 17
S _ A2
o7
n=0
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(c) z:%

Mopiq

>

n=0
oo

D

n=0

Son+1
2TL

(d) 2=

o0

D

n=0
oo

D

n=0

M_p
2n

S_n
271

(e) z:i

o0

D

n=0
oo

D

n=0

M—2n
4n

S—Qn
4n

(f) z:i

o0

D

n=0
oo

D

n=0

4n

4Tl

M _9n41

S_ont1

12

14
17

Wl o

—
D

E

39’
152
39 °

44
39’
28
39°

8 Sum Formulas > ;_, 2"Y? S0 2"V Ve, Sop_, 2¥Yi2Y) and Generating

Functions Y 7 V22" >

co-Narayana Numbers

s oy Y Yaz" > YaeY,2" of Generalized

Next, we present sum formulas of generalized co-Narayana Numbers numbers.

Theorem 29. Forn > 0, we have the following sum formulas for generalized co-Narayana numbers:
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n
(a) Y Y7= %(Y712+3 +Y2,-2Y2

bl 2Yn+2Yn+3 — 2Yn+1Yn+3 — 4Yn+1Yn+2 — Y22 — Y12 + 2Y02 +2Y1Ys +
k=0
2VoYs + AYpY?).

n
(b) Y ViV =3(-Y2 -V, — Y2 —YooYois— Va1 Yoy — 2V Yo + Y2+ Y2+ Y+ V1Yo +
k=0
YoYa + 2YpY1).

n
(€) 3 YipoYe = 2(—2Y,2 5 —2Y2 ) —2Y2 | 4+ ViioYnys — 2Vni1 Yogs + 2V 1 YVoqo + 2V + 2V 42V —
k=0
Y1Ys 4 2YpYs — 2YpYh).

Proof. Note that characteristic equation of the third-order recurrence sequence Y;, is the cubic equation
y3 +y — 1 = 0 whose roots are 61,6, 03 with 61 # 05 # 5. In [10, Theorem 2.1]), for r = 0,5 = —1,t = 1,

we get

[(z) = (—t22% +sz+rt2® +1)(r’z — s%22 + 1225 + 252 4 2rt2% — 1)
= (-24+2+22+1)(P+2-1)

and I'(1) # 0.

(a) Set W,, =Y, r=0,s=—1,t=1and z =1 in [10, Theorem 2.1 (a) (i)] or in [9, Theorem 2.1 (a)
(D)]-

(b) Set W,, =Y,, r=0,s=—1,t =1 and z =1 in [10, Theorem 2.1 (b) (i)|] or in [9, Theorem 2.1 (b)
()]

(c) Set W, =Y,,r=0,s=—1,t =1 and z = 1 in [10, Theorem 2.1 (c¢) (i)] or in |9, Theorem 2.1 (c)
(1)]. O

From the last Theorem, we have the following Corollary which gives sum formulas of co-Narayana
numbers (take Y;, = M,, with My =0,M; =1, My = 0).

Corollary 30. For n > 0, co-Narayana numbers have the following properties.

n
(a) Z ]\42 = %(M,%_,_g) + Mg+2 - 2Mg+1 - 2Mn+2Mn+3 - 2Mn+1Mn+3 - 4Mn+1Mn+2 - 1)-
k=0

n
(b) Z Mk—l—le = %(*Mg_kg - M¢2L+2 - Mz_t,_l - Mn+2Mn+3 - Mn+1Mn+3 - 2Mn+1Mn+2 + 1)
k=0

n
(€) 3 MypoMy = $(=2M72, 5 —2M2, 5 — 2M?2 | + MpyoMyys — 2Mp i1 Myyg + 2Mp 1 My + 2).
k=0
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Taking Y, = 5, with Sp = 3,51 = 0,52 = —2 in the last Theorem, we have the following Corollary

which gives sum formulas of co-Narayana-Lucas numbers.

Corollary 31. For n > 0, co-Narayana-Lucas numbers have the following properties:
n
(@) > SF=12(S2 5+ 52, —252, 1 — 25,125 43 — 28011543 — 4Sn11n+2 + 2).
k=0
n
(b) Z Sk+lsk = %(—S,%+3 - Sq%+2 - Sq%+1 - Sn+2Sn+3 - Sn+1Sn+3 - 2Sn+1Sn+2 + 7)
k=0

n
(C) Z Sk+2Sk = %(_2S72L+3 - 25721+2 - 257214_1 + Sn+25n+3 - 2Sn+1Sn+3 + 23n+15n+2 + 14)
k=0

oo oo [o.¢]
Next, we give the ordinary generating functions > Y,22", 3" Y,,11Y,2", . Y,12Y,2" of the sequences

n=0 n=0 n=0
{Ynz}a {Yn+1Yn}, {Yn+2Yn}.

Theorem 32. Assume that |z| < min{|01|2,]02]72, 10572, (0102, 101057, 020571} = [62] 2 =
0572 = [0203] " ~ 0.682327. Then the ordinary generating functions of the sequences {Y,2}, {Yni1Yn},
{Y,1+2Yn} are given as follows:

0 1
(a) YV "= (23+Z_1)(_zg+z2+22+1)<(Y0+Y2)2z5+(Yf+2YoY1+2Y1Y2)z4+(—Y22+2%2+

n=0
2¥1Y0)2* — (V3 + Y2 — YR)22 — (Y3 + YD)z — Y2).

0 1
(b) 3 YiYne" = (23+z_1)(_23+22+2Z+1)%%+5@>z5+(%+1@)<m+Y2>z4+<YE+2%Y1+

n=0
Y1Y2)23 + (YoY1 — YoY2)22 — Y1(Yo + Ya)z — YoY7).

5 1
(c) nZ:O Ynta¥ne" = (B+z-1)(=23+22+22+1) (Y1(Yo+Y2)2" + (Y3 + Yo Yo — Y1 Ya) 2 + (Y7 +2Y( Yo —

ViYo+ Y2)2 + (Y2 — ViYa — YoYi + Y2 + Yp¥a)22 + (Y2 — Yo¥i — YoYa)z — YpYa).

Proof. Set W,, =Y, and r = 0,s = —1,¢t = 1 in [10, Theorem 3.1] or in [9, Theorem 3.1]. O

Now, we consider special cases of the last Theorem.

Corollary 33. Assume that |z| < min{|0;|72, (02|72, |05 72, (0102 7",16103] 7", 020571} = [65]72 =
05|72 = [0205] " ~ 0.682327. The ordinary generating functions of the sequences {M2}, { M1 M},
{My oMy} and {S2}, {Sni1Sn}, {Sni2Sn} are given as follows:
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(a)
iMQz" _ 2 —22—2
= (BB+z-1)(-22+22+22+1)
iSan B 25 +1423 +522 — 92— 9
= (B =D (=B 2+ 224+ 1)
(b)
o0 2,’3
My i My 2" =
n;) nt1Hin (B4+2-1)(-8+22+22+1)
is g 325 — 224 + 622
Lot T B —)(-P+ 22+ 22+ 1)
(c)
& 2
24+ =z
My oMy 2" =
n;) nt2Hin (B4+z2-1)(-8+22+22+1)
is g 324 +23-222462+6
Lot T B - )(-P+ 22+ 22+ 1)

From the last corollary, we obtain the following results for special cases of z.

Corollary 34. Some infinite sums of {M2}, { M1 My}, {MpoMy} and {S2}, {Sn+15n}, {Sni2Sn} are

given as follows:

1
(a) Z—i.
-~ Mi 4
o AL 51
o~ Sn _ 670
= n 51
1
b = —.
(b) ==
iM _ 8
o n 51
i5n+lsn o _%
2n 51
n=0
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1
(c) z= 7
i Mn+2Mn _ _E
= A 17
i SnJrQSn _ _@
o AL 17

9 Generalized co-Narayana Numbers by Matrix Methods

In this section, we present matrix representations of the sequences Y,, M, and S,,. We also introduce

Simson matrix and investigate its properties.

9.1 Matrix Representations of the Sequences Y,,, M,, and S,

We define the square matrix A of order 3 as:

0 -1 1
A= 1 0 0
0 1 0

such that det A = 1. Some properties of matrix A™ can be given as

A" = _An—2_|_An—3’
An+m — AnAm — AmAn,

for all integers m and n. Note that we have the following formulas:

Yoio 0 -1 1 Yot
Yor1 | =1 1 0 O Y, )
Y, 0 1 0 Y, 1
and "
Yn+2 0 -1 Y2
Yor1 | =1 1 0 0 Yi |,
Y, 0 1 Yo
and
My 42 0 -1 1 My 41
Myyy | = 1 0 M,
M, 0 1 0 M, 1
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We also define

Mn+1 *Mn + Mn—l Mn
B, = M, —M,_1+ M, M,
M,—1 —My_o+M,_3 M,_»
and
Yoi —Yo4+Ye. Y
Dn=| Y, —Y, 1+Y,, Y,
Y1 Yoo+ Y,3 Yo

Theorem 35. For all integers m,n, we have the following properties:

(a) B, = A", i.e.,

0 -1 1 Mps1 —My+ M,y M,
1 0 0 = M, ~Mp_1+ My My
0 1 0 Mn—l _Mn—2 + Mn—3 Mn—2
(b) DA™ = A"D;.
(¢) Dpym = DpBy, = BypDy,, i.e.,
Yn+m+1 —Int+m + Yn+m—1 Yn+m
Yner _Ynerfl + Yn+m72 Yn+m71
Yn+m—1 _Yn+m—2 + Yn+m—3 Yn+m—2
Yn+1 _Yn + Ynfl Yn Mm+1 _Mm + Mmfl
= Yy Y, 1+Y 2 Yo M,, —Myp—1+ My
Yn—l _Yn—2 + Yn—3 Yn—2 Mm—l _Mm—Z + Mm—3
Merl _Mm + Mmfl Mm Yn+1 _Yn + Ynfl
= M., ~Mpy1+ My—o My Y, Y, 1+Y, 2
Mm—l _Mm—2 + Mm—3 Mm—2 Yn—l —Yp o+ Yn—?)

(d)

A" = Mn—1A2 + (_Mn—2 + Mn—3)A + My ol

i.€.,

A" = (My g2 + My)A% + My A+ (Mpio + My + My)I
that is,

A" = My o(A? + 1)+ Myq I + My (A2 + A+ 1)

My,
My,
M2

Y,

Yo

Yoo
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where
100
I= 010
0 01
Proof. Set W,, =Y,,r=1,s=0,t=1 and G, = M,, in |8, Theorem 51|. O

Next, we present matrix formulas for the generalized co-Narayana and co-Narayana-Lucas numbers.

Corollary 36. For all integers n, we have the following formulas for generalized co-Narayana numbers

and co-Narayana-Lucas numbers.

(a) Generalized co-Narayana numbers.

n

0 -1 1 1 ail aiz2 a3
1 0 O = Ay (0) az1 Q22 Q23
0 a1 as2 ass

where

ann = (Y§ = V1Yo — YoY1)Yois + (Y4 4 YoYa — YoY71) Yot 4+ (Y2 — YoY2) Vi1,
ag = (YZ = V1Yo — YoY1)Yoio + (V£ + YoYa — YoY1) Y1 + (Y2 — YoYa)Y,,
az1 = (Y§ = Y1Ya = YoV1)You1 + (Y7 + YoY2 — YoY1)Yy, + (Y — YoY2) Y1,

a1z = —((YE-Y1Y2—YoY1) Yo+ (VS +Y0Y2—Y0Y1)Yn+1+(yl —YoY2) Yo )+ ((Y§—Y1Yo—YoY1) Yo +(

aze = —((YE-—Y1Ya—YoY1)Yyi1 +(Y7 +Y23Y2—Y0Y1)Y +(Y2=YoY2) Yy 1)+ (YE—Y1Ya— Yo Y1) Yy +(
Y$ + YoYe — YoY1) Yo + (Y — YoY2) Y, 9),

aze = —((YE-Y1Y2—YoY1) Y+ (Y2 +Y0Ya— Yo Y1) Y1+ (Y2 =Y0Y2) Yy o)+ (Y@ —Y1 Yo=Y Y1) Yoo 1 +(
YZ + YoYs — YoY1) Yo + (Y — YY2)Y,_3),

a1 = (Y7 — V1Yo — VoY1) Yoo 4+ (Y5 + YoYs — YoY1) Y1 + (Y7 — YY)V,
ag = (Y§ — V1Yo — YoY1) Yoy + (V5 + YoYo — oY1)V, + (V7 — YoY2) Y, 1,
azz = (Y5 = Y1Ya = VoY1)V, + (Y5 4 YoYa — YoV1) Y1 + (Y — YoY2) Yy o,
and
Ay (0) = Y3 + Y2 + Y3 + YoYF + VoY + VoY — 2Y2Y; — 3YaN1 Yy

(b) co-Narayana-Lucas numbers.

0 —1 1 . bi1 b2 biz
31 bo1 b2 bag

b31 b32 b33
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where

bii = 9513 — 2510 + 6541,

bor = 9,19 — 25,41 + 65,

b31 = 95,41 — 25, + 65,1,

bio = —9Sn40 + 11Sps1 — 8Sy + 6S,_1,
bos = —9Sn41 + 115, — 8Sp_1 + 6Sp_o,
byo = —9S,, + 115, 1 — 8S,_o + 6S,_3,
bis = 9519 — 2541 + 65,

bog = 9Sn11 — 25 + 6Sn_1,

bss = 95, —25,-1 + 6Sp,_2.

Proof. Set W,, = Y,,,7 =0, s= —1, t =1 and then take Y,, = S,, in |8, Corollary 52]. O
Note that, a1, ass, ass and byo, bas, b3o can be written in the following form:

a1 = (Y5 + Y5 —NYo = YoYa) Y1 + (Y3 = Y2+ Y7 — V1Yo 4+ 2YYs — 2Yp Y)Y, + (VP = Y@ + V1Yo —
YoYs 4+ VoY1) Yy 1,

ase = (=YZ + Y —V1Yo = YoYa)Y, + (Y& — Y2 + Y@ — V1Yo + 2Yo Yo — 2o Y1)V, + (Y2 = YE + V1Yo —
YoYo + YoY1)Y, o,

azo = (—YZ + Y — V1Yo — YoYa) Y1 + (Y& = Y2+ YZ — V1Yo + 2YpYse — 2YpY1) Y, o + (Y — Y2 +
1Yo — YoYo + YoY1)Y, s,

and
bio = 11841 + Sp — 35n—1,
boo =115, + S,,_1 — 3S,_2,
bso = 1151 + Sp—2 — 3S,—3.
Now, we present an identity for Y, 4p,.
Theorem 37. (Honsberger’s Identity) For all integers m and n, we have

Yn+m - Yan+1 + Yn—l(_Mm + Mm—l) + Yn—QMm;
= Yan+1 + (_Yn—l + Yn—2) My + Y 1 Mp, 1.

Proof. Set W, =Y,,r=0,s = —1,t =1 and then N,, = M,, in |8, Theorem 53|. O
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As special cases of the last Theorem, we have the following corollary.

Corollary 38. For all integers m,n, we have the following properties:

Mn—i—m = Man+1 + Mn—l(_Mm + Mm—l) + Mn—QMTm
Sn—i—m = San—H + Sn—l(_Mm + Mm—l) + Sn—QMm-

Next, we present identies for Y;,,,1; and its special cases.

Corollary 39. For all integers m,n, j, we have the following properties:

Ymn+j = an—1Y3+2 + (_an—Z + an—?)) }/}+1 + an—2Y37
an+j = an—le+2 + (_an—Q + an—S) Mj+1 + an—2Mj7
Sanrj = an715j+2 + (_an72 + anf?;) Sj+1 + anfQSj-

Proof. Set r = 0,s = —1,t = 1 and W,, = Y,,, then take Y;, = M,,, Y,, = S,,, respectively, in [8, Corollary
55]. O

9.2 Simson Matrix and its Properties

For n € Z, we define
Yotz Yot Yy
frin)=1 Youu Yn Yo
Y, Y, Y,

We call this matrix as Simson matrix of the sequence Y,,. Similarly, as special cases of Y,,, Simson matrices

of the sequences M,, and S,, are

Mn+2 Mn-l—l Mn Sn+2 Sn+1 Sn
fM(TL) = My M, M1 and fS(n) = Sn+1 Sn Sn—1
Mn Mnfl Mn72 Sn Snfl San

respectively.

Lemma 40. For all integers n,m and j, the followings hold.

(@) fy(n)=—fr(n—2)+ fy(n-3).
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(b) fy(n)=Afy(n—1) and fy(n) = A" fy(0), i.e.,
Yn+2 Yn+1 Yn 0 -1 1 Yn—i—l Yn Yn—l
Yo Y, Yo 1 = 10 0 Y, Y1 Yo
Yn Ynfl Yn72 0 1 0 Ynfl Ynf2 Yn73
and N
Yope You1 Y, 0 -1 1 Y i Y
Yn+1 Y, Y1 = 1 0 0 Yi Yo Y,
Y, Y1 Y. oo 0 1 0 Yo Y1 Yo
(¢) fy(n+m)=A"fy(m) and fy(n+m)=A"fy(n) ie.,
n
Yn+m+2 Yn+m+1 Yn+m 0 -1 1 Ym+2 Ym+1 Ym
Yn+m+1 Yn—l—m Yn+m—1 = 1 0 0 Ym+1 Y Yin—1 >
Yner Yn+m71 Yn+mf2 0 1 0 Ym mel meZ
m
m+n+2 Ym+n+1 Yern 0 -1 1 Yn+2 Yn+1 Yn
Yimtn+t1 Yintn Yinin—1 = I 0 0 Yo Y, Yo )
m+n Ym+n 1 Ym+n—2 0 1 0 Yn Yn—l Yn—2
and fy Amfy n - ), i.e.,
n+2 n+1 Yn 0 -1 1 " Yn—m+2 Yn—m+1 Yn—m
Yo Y1 = 10 0 Yo—m+1 Yoom Yi-m-—1
Yn—2 0 1 0 Yn—m Yn—m—l Yn—m—2
Proof. Set W,, =Y, and r =0, s = —1, t = 1 in 8, Lemma 56]. O

Taking the determinant of both sides of the identities given in the last Lemma, we obtain the following
Theorem.

Theorem 41. For all integers n and m, the following identities hold.

(a) Catalan’s Identity:

det(fy(n+m)) =det(fy(m)) and det(fy(n)) = det(fy(n—m)),

i.e.,
Yn+m+2 Yn+m+1 Yn+m Ym+2 Ym+1 Ym
Yn+m+1 Yner Ynerfl = Yerl Y Yin—1 |,
Yner Ynerfl Yn+m72 Ym mel Ym72
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and
Yore Yo Yp Yo-mt+2 Yn-mt+1  Yo-m
Yorr Y Youl=|Yem Yem Yemo
Yo Yo Yao Yoom  Yonom-1 Yaom—2

(b) (see Theorem 18) Simson’s (or Cassini’s) Identity:

det(fy(n)) = det(fy(0)),

i.e.,
Yn+2 Yn+1 Yn Y2 }/1 }/0
Yor1. Yo Yo |=|Y1 Yo Y
Yo Y1 Yoo Yo Y1 Yo
Proof. Set W,, =Y, and r =0, s = —1, t = 1 in [8, Theorem 57|. O

From the last Theorem, we have the following Corollary which gives determinantal formulas of
co-Narayana numbers (take Y;, = M,, with My =0, M; = 1, My = 0).

Corollary 42. For all integers n and m, the following identities hold.

(a) Catalan’s Identity:

det(far(n+m)) = det(far(m)) and det(far(n)) = det(frr(n —m)),

i.e.,
Mn+m+2 Mn+m+1 Mn+m Mm+2 Mm+1 M,
Mpyvmi1  Morm Mpyme1 | =| M1 My, M4 |,
Myim  Mpym—1 Mpym—2 My Mp—1 My—2
and
Mpto Mpy1 M, Mp-mi2 Mp-mi1  Mpm
My M, My |=| Mp—m+1  Mu—m Mp—m—1
M, M,_1 M,_o My_pm My_mo1 Mpy_pm_o

(b) Simson’s (or Cassini’s) Identity:
det(fa(n)) = det(fm(0)),

i.€.,
Mn+2 Mn-‘rl Mn
My M, M, |=-L
Mn Mnfl Mnf2
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Taking Y, = 5, with Sp = 3,51 = 0,52 = —2 in the last Theorem, we have the following Corollary

which gives determinantal formulas of co-Narayana-Lucas numbers.

Corollary 43. For all integers n and m, the following identities hold.

(a) Catalan’s Identity:

det(fs(n+m)) = det(fs(m)) and det(fs(n)) = det(fs(n —m))

i.e.,
Sn+m+2 Sn+m+1 Sn+m Sm+2 Sm—i—l Sm
Sntm+1 Sntm  Sntm—1 | = | Sm1 Sm Sm-1 |»
Sn-i-m Sn—i—m—l Sn+m—2 Sm Sm—l Sm—2
and
Sn+2 Snt1 Sn Sn-m+2  Sn—m+1  Sn-m
Spnt1 Sn Sne1 | =1 Snema1r Sn—m Snem—1
Spn Spo1 Sh_o Snem  Snem-1 Sn_m_2

(b) Simson’s (or Cassini’s) Identity:
det(fs(n)) = det(fs(0)),

i.e.,
Sn+2 SnJrl Sn
Sn—i—l Sn Sp—1 | =31
Sn Sn— 1 Sn—2
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