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Abstract

The classical continuous univariate probability distributions, which contain one or two parameters, have been 
observed to break down when complexities exist in the structure of a data set such as when outliers are present, 
alongside observations centered around the mean. When a data set exhibits heterogeneity or exists in a multi-
component form and it becomes impossible to use a single probability distribution to capture the distinct 
components of the data set, using a composite distribution to model the data set becomes plausible. This situation 
has led to the formulation of various hybrid or composite models where each component of the hybrid model 
handles the specific part of the data set that it is well suited for. Furthermore, the approach or method used in the 
formulation of these hybrid models plays a vital role in determining how meaningful the results obtained from 
them are. Several approaches or methods for formulating hybrid distributions have appeared in the literature, each 
with their own pros and cons. We present in this paper a general two-component hybrid model for fitting 
heterogeneous heavy-tailed data sets with tails to the right. The functional form of the two-component hybrid 
family is specified by the probability density function (pdf), cumulative distribution function (cdf) and the 
quantile function. Three members of the family using three different distributions for the right tail are presented.  
A formal method based on maximum likelihood for the estimation of the parameters of the models belonging to 
the family is also presented. A Monte Carlo simulation study is carried out to determine the efficiency of the 
estimation method. An application to a real data set in finance is performed.

1. Introduction 

In many situations, particularly in hydrology, finance and insurance, the use of a single probability 
distributions in fitting observed data can be very inadequate owing to the fact that there exists some reasonable 
number of outliers in the data and hence the structure of the data can be termed heterogeneous, having both the 
main part which contains the bulk of the data around the mean, and the tail part which contains observations 
that can be classified as extremes or outliers. Using a single probability distribution such as the Gaussian, 
lognormal, Weibull, gamma distributions etc. in fitting such data, can result in either overstating or understating 
of risk probabilities. Without a loss in generality, the observations which are classified as outliers are assumed 
to be on the right-tail of the distribution and thus the data can be treated as right heavy-tailed. To adequately 
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model the data, it is required that a piecewise two-component model be used, where each component of the 
model is used to handle the specific property of the data for which it is suited. In standard extreme value theory, 
the tail area usually follows the Generalized Pareto Distribution (GPD) after a certain threshold has been 
exceeded, and it thus leaves the investigator to find an appropriate distribution for the main part of the data and 
use some sound mathematical technique to join the two distributions together in such a way that standard 
conditions for the existence and uniqueness of a probability distribution is satisfied.  

Cooray and Ananda (2005) offered a procedure for doing this and since then, several modifications and 
extensions of that work have appeared in the literature (Scollnik 2007; Carreau and Bengio 2009; Mandava et 
al. 2011; Li et al. 2012; Kollu et al. 2012; Scollnik and Sun 2012; Debbabi 2015; Baker et al. 2015; Debbabi 
2016). The normal, Weibull, lognormal and gamma distributions have been used in several studies in the 
literature as the distribution of the main part of the data and while useful results have been obtained so far, it has 
also been observed that these classical distributions can prove inadequate in certain cases (Preda and Ciumara 
2006; Teodorescu and Vernice, 2006, 2009; Cooray et al. 2009; Cooray 2010; Teodorescu and Vernice 2013; 
Benatmane et al. 2020). For the tail area, where the GPD has been extensively used, it remains an open area of 
research to try out other heavy-tailed distributions in place of the GPD. Some of these heavy-tailed distributions 
include the Pareto, Burr XII and the Lomax distributions. In this paper, we present a general family of two-
components hybrid models which combines distributions for the bulk of the data around the mean and those for 
the tail where outliers are present. 

The rest of the paper is organized as follows. In Section 2, we take a look at the new hybrid family. Section 
3 contains the estimation algorithm for the parameters of the new hybrid family. In Section 4, we look at some 
specific members of the new hybrid family, while in Section 5 a simulation study is conducted to test the 
performance of the estimation algorithm used in estimating the parameters of the new family. An application to 
a financial data set is conducted in Section 6. The paper closes in Section 7 with conclusion. 

2. The New Hybrid Family

Suppose we have a data set which can be conveniently separated into two components. We assume without 
a loss in generality that the first component is the main part of the data, while the second part is the part that 
contains the extreme observations or outliers. Our goal is to use a two-component piecewise pdf to model the 
data where each component of the data will be modelled by a pdf which is best suited for it, and in general 
combine the two pdfs together. Let 𝑓1 and 𝑓2 be two pdfs with respective parameter vectors 𝜃1 and 𝜃2 where 
𝑓1 is the density of the first component of the data and 𝑓2 is the density of the second component. Suppose 𝐹1 
and 𝐹2 are cdfs corresponding to 𝑓1 and 𝑓2 respectively, with respective quantile functions 𝑄1(𝑝;𝜃1) and 𝑄2

(𝑝;𝜃2), 0 < 𝑝 < 1. We define the general pdf of the hybrid family of distributions as

                                    𝑓(𝑥;𝜃) = 𝑢1𝑓1(𝑥;𝜃1),              if ― ∞ < 𝑥 ≤ 𝑟,    
𝑢2𝑓2(𝑥;𝜃2),               if    𝑟 ≤ 𝑥 < ∞,                                                            (1)

where 𝜃 is a vector which contains all the free parameters, 𝑢1 and 𝑢2 are weights associated with a specific 
component of the density, and 𝑟 is a threshold indicating the point of movement from the main innovation 
component to the tail area or the part that contains the extreme observations. In previous studies, the threshold 𝑟 
is estimated using graphical methods but in this model, we have specified it as a parameter, and it would be 
estimated algorithmically. 

In the model in (1), we assume that the movement from one component of the model is smooth and thus we 
make the following assumptions for the model:
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(a) First, we assume that the pdf in (1) is non-negative and satisfies

𝑅

𝑓(𝑥;𝜃)𝑑𝑥 = 1.

This implies that 

𝑢1𝐹1(𝑟;𝜃1) + 𝑢2[1 ― 𝐹2(𝑟;𝜃2)] = 1.                                                             (2)

(b) The data has a heavy-tail and the tail is to the right. 

(c) The pdf in (1) is smooth and is continuous and differentiable at the threshold 𝑟. This implies that

𝑢1𝑓1(𝑟;𝜃1) = 𝑢2𝑓2(𝑟;𝜃2)
𝑢1𝑓

′1
(𝑟;𝜃1) = 𝑢2𝑓

′2
(𝑟;𝜃2).                                                                (3)

Using the result in (3) we have 

   𝑢1 =
𝑢2𝑓2(𝑟;𝜃2)

𝑓1(𝑟;𝜃1) .                                                                          (4)

Substituting (4) into (2) gives

𝑢2 =
𝑓2(𝑟;𝜃2)
𝑓1(𝑟;𝜃1) 𝐹

1
(𝑟;𝜃1) + 1 ― 𝐹2(𝑟;𝜃2)

―1

.                                            (5)

The cdf corresponding to our proposed general family of hybrid probability density function in (1) is given by

                          𝐹(𝑥;𝜃) = 𝑢1𝐹1(𝑥;𝜃1),                                      if ― ∞ < 𝑥 ≤ 𝑟,
1 ― 𝑢2[1 ― 𝐹2(𝑥;𝜃2)],                   if    𝑟 ≤ 𝑥 < ∞.                          (6)

The quantile function corresponding to the cdf in (6) is given by

                    𝑄(𝑝;𝜃) =
𝑄1

𝑝
𝑢1

;𝜃1 ,                            if  𝑝 ≤ 𝑢1,

𝑄2
𝑝 ― (1 ― 𝑢2)

𝑢2
;𝜃2 ,                        if  𝑝 ≥ 1 ― 𝑢2.       

                            (7)

Random samples 𝑋 can be simulated from the general family in (1) by replacing 𝑝 in (7) with 𝑈 where 𝑈 is a 
uniform random variable on (0,1). That is,

                            𝑋 =
𝑄1

𝑈
𝑢1

;𝜃1 , if    𝑈 ≤ 𝑢1,

𝑄2
𝑈 ― (1 ― 𝑢2)

𝑢2
;𝜃2 , if    𝑈 ≥ 1 ― 𝑢2.

                                                (8)

3. Estimation Procedure

Here we present an estimation routine for the vector of free parameters 𝜃 in the hybrid density in (1).  First, 

we assumed that the density in (1) depends on the vector of free parameters 𝜃 = 𝛿1,…,𝛿𝑝,𝑟
𝑇

,𝑝 ∈ ℕ+. Consider 
a complete independent random sample 𝑥1,𝑥2,…,𝑥𝑛 of size 𝑛 from the distribution in (1). Without a loss in 
generality, assume this sample is ordered such that 𝑥1 ≤ 𝑥2 ≤ … ≤ 𝑥𝑛. To estimate the parameter vector 𝜃 using 
the maximum likelihood approach, one would require some information about a positive integer 𝑚 such that 𝑟 
lies between the 𝑚-th and (𝑚 + 1)-th observation, so that 𝑥𝑚 ≤ 𝑟 ≤ 𝑥𝑚+1 . Assume that 𝑚 is known. Define 
the likelihood function of any complete independent random sample 𝑥1,𝑥2,…,𝑥𝑛 from a distribution 𝑔 with 
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parameter vector 𝜗 as

ℒ(𝑥1,𝑥2,…,𝑥𝑛;𝜗) =
𝑛

𝑖=1
𝑔(𝑥𝑖;𝜗) .

Consequently, the likelihood function based on the density in (1) is expressed as 

ℒ 𝑥1,𝑥2,…,𝑥𝑛;𝛿1,…,𝛿𝑝,𝑟 =
𝑛

𝑗=1
𝑓(𝑥𝑖;𝜃) =

𝑚

𝑘1=1
𝑢1𝑓1(𝑥𝑘1; θ1)

𝑛

𝑘2=𝑚+1
𝑢2𝑓2(𝑥𝑘2; θ2)

                                  = 𝑢𝑚
1 𝑢𝑛―𝑚

2

𝑚

𝑘1=1
𝑓1(𝑥𝑘1; θ1)

𝑛

𝑘2=𝑚+1
𝑓2(𝑥𝑘2; θ2)

= 𝑢𝑚
1 𝑢𝑛―𝑚

2 ℒ(𝑥1,𝑥2,…,𝑥𝑚1; θ1)ℒ(𝑥𝑚+1,𝑥𝑚+2,…,𝑥𝑛; θ2).

The log-likelihood function corresponding to the likelihood is expressed as 

𝐿 = logℒ 𝑥1,𝑥2,…,𝑥𝑛;𝛿1,𝛿2,…,𝛿𝑝,𝑟 = 𝑚log𝑢1 + (𝑛 ― 𝑚)log𝑢2

+
𝑚

𝑘1=1
log 𝑓1(𝑥𝑘1; θ1) +

𝑛

𝑘2=𝑚+1
log 𝑓2(𝑥𝑘2; θ2) .                                          (9)

In practice, the exact values of 𝑚 is usually unknown. Observe also that if 𝑚 changes, the maximum likelihood 
estimator of θ also changes. A grid search for the optimal value of 𝑚 can be performed. For an optimal value of 
𝑚, we obtain 𝛿1,…,𝛿𝑝, 𝑟 as solutions of the systems 

∂𝐿 
∂𝛿𝑖

= 0,         𝑖 = 1,2,…,𝑝
∂𝐿
∂𝑟 = 0.                                

                                                                       (10)

If 𝑥𝑚 ≤ 𝑟 ≤ 𝑥𝑚+1 , then the maximum likelihood estimators of 𝛿1,𝛿2,…,𝛿𝑝 ,and 𝑟 are 

𝛿
𝑀𝐿
𝑖 = 𝛿𝑖, 𝑖 = 1,2,…,𝑝   𝑟𝑀𝐿 = 𝑟.

4. Specific Members of the General Family

Here, we consider three hybrid distributions which are members of the general family in (1). We let the 
distribution for the main innovation or main part of the data be the skew-normal distribution. That is, 𝑓1, 𝐹1 and 
𝑄1 are the pdf, cdf and quantile function of the skew-normal distribution respectively, with 

𝑓1(𝑥;𝛼,𝜏,𝜑) =
2
𝜑 𝜙

𝑥 ― 𝜏
𝜑 Φ 𝛼

𝑥 ― 𝜏
𝜑 ,         ― ∞ < 𝑥,𝛼 < ∞, 𝑥 ≥ 𝜏,𝛼,𝜏,𝜑 > 0,

where 𝜙(.) = Φ
′
(.) and Φ(.) is the cdf of the normal distribution,

𝐹1(𝑥;𝛼,𝜏,𝜑) = Φ
𝑥 ― 𝜏

𝜑 ― 2𝑇
𝑥 ― 𝜏

𝜑 ,𝛼 ,         ― ∞ < 𝑥 < ∞, 𝑥 ≥ 𝜏,𝛼 ≥ 0,𝜏,𝜑 > 0,

where 𝑇(ℎ,𝑎) is the Owen’s T function defined by
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𝑇(ℎ,𝑎) =
1

2𝜋

𝑎

0

𝑒―1
2ℎ2(1+𝑥2)

1 + 𝑥2 𝑑𝑥,         ― ∞ < 𝑎,ℎ < ∞, 

𝑄1(𝑝;𝛼,𝜏,𝜑) = 𝐹―1
1 (𝑥;𝛼,𝜏,𝜑),         0 < 𝑝 < 1.

In the skew normal distribution, the parameters 𝛼,𝜏 and 𝜑 are shape, location, and scale parameters 
respectively. We have decided to make 𝑓1 the skew-normal distribution because, in several literatures, the 
normal distribution is used and since the skew-normal distribution is more flexible, we consider our choice a 
good one. For the tail component, we use three heavy-tailed distributions. That is, we shall choose 𝑓2 to be 
three heavy-tailed distributions to combine with the skew-normal distribution to form the two-component 
hybrid models. These tail distributions include: the GPD, the Pareto distribution (PD) and the Lomax 
distribution (LD). Thus, we shall formulate the following hybrid models: the skew-normal GPD (SN-GPD) 
distribution, the skew-normal Pareto (SN-PD) distribution and the skew-normal Lomax (SN-LD) distribution. 

4.1. The skew-normal GPD (SN-GPD) distribution

The GPD has pdf, cdf and quantile function expressed respectively as

𝑓2(𝑥 ― 𝑟;𝛾,𝑐) =
1
𝑐 1 + 𝛾

𝑥 ― 𝑟
𝑐

―1―1
𝛾
 ,  

𝐹2(𝑥 ― 𝑟;𝛾,𝑐) = 1 ― 1 + 𝛾
𝑥 ― 𝑟

𝑐

―1
𝛾
 ,

𝑄2(𝑝;𝑟,𝛾,𝑐) =
𝑐
𝛾 [(1 ― 𝑝)―𝛾 ― 1] + 𝑟,

∀𝑥 ≥ 𝑟 ∈ 𝑍(𝛾,𝑐), ― ∞ < 𝛾 < ∞,𝑐 > 0,

𝑍(𝛾,𝑐) =
[0,∞)         if  𝛾 ≥ 0
0, ― 𝑐 𝛾   if  𝛾 < 0,         0 < 𝑝 < 1.

The parameter 𝑐 is a scale parameter while the parameter 𝛾 is the tail index parameter. Using the result in (1), 
the pdf of the SN-GPD is given by

                                 𝑓(𝑥;𝜃) =
𝑢1𝑓1(𝑥;𝛼,𝜏,𝜑),                     if ― ∞ < 𝑥 ≤ 𝑟,

𝑢2
1
𝑐 1 + 𝛾

𝑥 ― 𝑟
𝑐

―1―
1
𝛾
,   if    𝑟 ≤ 𝑥 < ∞.       

                    (11)

Using the assumptions (a-c) in Section 2, we obtain the following equations relating to the weights 𝑢1 and 𝑢2 
and the parameter 𝑐 of the model in (11):

 𝑢1 =
𝑢2

𝑐𝑓1(𝑟;𝛼,𝜏,𝜑) ,

𝑢2 = 1 +
𝐹1(𝑟;𝛼,𝜏,𝜑)
𝑐𝑓1(𝑟;𝛼,𝜏,𝜑)

―1

,

𝑐 = ― (1 + 𝛾)
𝑓1(𝑟;𝛼,𝜏,𝜑)
𝑓

′1
(𝑟;𝛼,𝜏,𝜑)

.

The parameter vector 𝜃 in (11) contains only the free parameters and thus 𝜃 = [𝛼,𝜏,𝜑,𝑟,𝛾]. After 𝜃 has been 
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estimated, the values of the other constrained parameters which are 𝑢1,𝑢2 and 𝑐 can be obtained from the above 
relations which describe them. Observe that in the model, there are eight parameters which we ought to estimate 
their values, however, with the imposition of the assumptions or the constraints in Section 2, we were able to 
reduce the number of parameters to be estimated to just five. This presents one of the benefits of our methods. 

Figure 1: The SN-GPD density [𝜏 = 0,𝜑 = 1,𝛾 = 5].

The cdf and quantile function of the SN-GPD are given respectively by 

                   𝐹(𝑥;𝜃) =
𝑢1𝐹1(𝑥;𝛼,𝜏,𝜑),                                if ― ∞ < 𝑥 ≤ 𝑟,

1 ― 𝑢2 1 + 𝛾
𝑥 ― 𝑟

𝑐

―
1
𝛾
,                    if    𝑟 ≤ 𝑥 < ∞,       

                             (12)

                     𝑄(𝑝;𝜃) =
𝑄1

𝑝
𝑢1

;𝛼,𝜏,𝜑 ,                                if    𝑝 ≤ 𝑢1,                     
𝑐
𝛾

1 ― 𝑝
𝑢2

―𝛾

― 1 + 𝑟,                 if    𝑝 ≥ 1 ― 𝑢2.         
                         (13)

Figure 2: The SN-GPD cdf[𝜏 = 0,𝜑 = 1,𝛾 = 5].
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Random samples 𝑋 can be simulated from the SN-GPD by replacing 𝑝 in (13) with 𝑈 where 𝑈 is a uniform 
random variable on (0,1). That is,

                                      𝑋 =
𝑄1

𝑈
𝑢1

;𝛼,𝜏,𝜑 ,                                               if 𝑈 ≤ 𝑢1,                     
𝑐
𝛾

1 ― 𝑈
𝑢2

―𝛾

― 1 + 𝑟,                                if    𝑈 ≥ 1 ― 𝑢2.       
                   (14)

4.2. The skew-normal Pareto (SN-PD) distribution

The PD has pdf, cdf and quantile function expressed respectively as

𝑓2(𝑥;𝑏,𝑟) =
𝑏𝑟𝑏

𝑥𝑏+1 ,  

𝐹2(𝑥;𝑏,𝑟) = 1 ―
𝑟
𝑥

𝑏
,

𝑄2(𝑝;𝑏,𝑟) = 𝑟(1 ― 𝑝)―1 𝑏,

𝑥 ≥ 𝑟, 𝑟 > 0,𝑏 > 0, 0 < 𝑝 < 1.

The parameter 𝑏 is a shape parameter while the parameter 𝑟 is a location parameter. Using the result in (1), the 
pdf of the SN-PD is given by

                                         𝑓(𝑥;𝜃) =
𝑢1𝑓1(𝑥;𝛼,𝜏,𝜑),                             if ― ∞ < 𝑥 ≤ 𝑟,          

𝑢2
𝑏𝑟𝑏

𝑥𝑏+1 ,                                      if    𝑟 ≤ 𝑥 < ∞.                               (15)

Using the assumptions (a-c) in Section 2, we obtain the following equations relating to the weights 𝑢1 and 𝑢2 
and the parameter 𝑏 of the model in (15):

 𝑢1 =
𝑢2𝑏

𝑟𝑓1(𝑟;𝛼,𝜏,𝜑) ,

𝑢2 = 1 +
𝑏𝐹1(𝑟;𝛼,𝜏,𝜑)
𝑟𝑓1(𝑟;𝛼,𝜏,𝜑)

―1

,

𝑏 = ―
𝑟𝑓

′1
(𝑟;𝛼,𝜏,𝜑)

𝑓1(𝑟;𝛼,𝜏,𝜑) ― 1.

The parameter vector 𝜃 in (15) contains only the free parameters and thus 𝜃 = [𝛼,𝜏,𝜑,𝑟]. After 𝜃 has been 
estimated, the values of the other constrained parameters which are 𝑢1,𝑢2 and 𝑏  can be obtained from the above 
relations which describe them.  Observe that in the model, there are seven parameters which we ought to 
estimate their values, however, with the imposition of the assumptions or constraints in Section 2, we were able 
to reduce the number of parameters to be estimated to just four. 

The cdf and quantile function of the SN-PD are given respectively by 

                         𝐹(𝑥;𝜃) =
𝑢1𝐹1(𝑥;𝛼,𝜏,𝜑),                     if ― ∞ < 𝑥 ≤ 𝑟,             

1 ― 𝑢2
𝑟
𝑥

𝑏
,                        if    𝑟 ≤ 𝑥 < ∞,                          (16)
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                                    𝑄(𝑝;𝜃) =
𝑄1

𝑝
𝑢1

;𝛼,𝜏,𝜑 ,                          if   𝑝 ≤ 𝑢1,               

𝑟
1 ― 𝑝

𝑢2

―1/𝑏

,                              if    𝑝 ≥ 1 ― 𝑢2.       
                (17)

Figure 3: SN-PD density [𝜏 = 0,𝜑 = 1].

Figure 4: SN-PD cdf[𝜏 = 0,𝜑 = 1].

Random samples 𝑋 can be simulated from the SN-GPD by replacing 𝑝 in (17) with 𝑈 where 𝑈 is a uniform 
random variable on (0,1). That is,

                    𝑋 =
𝑄1

𝑈
𝑢1

;𝛼,𝜏,𝜑 ,                              if   𝑈 ≤ 𝑢1,                   

𝑟
1 ― 𝑈

𝑢2

―1/𝑏

,                            if  𝑈 ≥ 1 ― 𝑢2.       
                      (18)
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 4.3. The skew-normal Lomax (SN-LD) distribution

The LD has pdf, cdf and quantile function expressed respectively as

𝑓2(𝑥 ― 𝑟;𝑐,𝑘) =
𝑘
𝑐 1 +

𝑥 ― 𝑟
𝑐

―𝑘―1
,  

𝐹2(𝑥 ― 𝑟;𝑐,𝑘) = 1 ― 1 +
𝑥 ― 𝑟

𝑐
―𝑘

,

𝑄2(𝑝;𝑐,𝑘,𝑟) = 𝑐 (1 ― 𝑝)―1 𝑘 ― 1 + 𝑟,

0 < 𝑝 < 1, 𝑥 ≥ 𝑟, 𝑟 > 0,𝑐 > 0,𝑘 > 0.

The parameter 𝑐,𝑘 and 𝑟 are scale, shape, and location parameters respectively. Using the result in (1), the pdf 
of the SN-LD is given by

                   𝑓(𝑥;𝜃) =
𝑢1𝑓1(𝑥;𝛼,𝜏,𝜑),                            if ― ∞ < 𝑥 ≤ 𝑟,

𝑢2
𝑘
𝑐 1 +

𝑥 ― 𝑟
𝑐

―𝑘―1
,                if    𝑟 ≤ 𝑥 < ∞.                        (19)

Using the assumptions (a-c) in Section 2, we obtain the following equations relating to the weights 𝑢1 and 𝑢2 
and the parameter 𝑐 of the model in (19):

 𝑢1 =
𝑢2𝑘

𝑐𝑓1(𝑟;𝛼,𝜏,𝜑) ,

𝑢2 = 1 +
𝑘𝐹1(𝑟;𝛼,𝜏,𝜑)
𝑐𝑓1(𝑟;𝛼,𝜏,𝜑)

―1

,

𝑐 = ― (1 + 𝑘)
𝑓1(𝑟;𝛼,𝜏,𝜑)
𝑓

′1
(𝑟;𝛼,𝜏,𝜑)

.

The parameter vector 𝜃 in (19) contains only the free parameters and thus 𝜃 = [𝛼,𝜏,𝜑,𝑘,𝑟]. After 𝜃 has been 
estimated, the values of the other constrained parameters which are 𝑢1,𝑢2 and 𝑐 can be obtained from the above 
relations which describe them. Observe that in the model, there are eight parameters which we ought to estimate 
their values, however, with the imposition of the assumptions or constraints in Section 2, we were able to 
reduce the number of parameters to be estimated to just five. 

The cdf and quantile function of the SN-PD are given respectively by 

               𝐹(𝑥;𝜃) =
𝑢1𝐹1(𝑥;𝛼,𝜏,𝜑),                                 if ― ∞ < 𝑥 ≤ 𝑟,

1 ― 𝑢2 1 +
𝑥 ― 𝑟

𝑐
―𝑘

,                    if    𝑟 ≤ 𝑥 < ∞,                                     (20)

                      𝑄(𝑝;𝜃) =
𝑄1

𝑝
𝑢1

;𝛼,𝜏,𝜑 ,                                  if  𝑝 ≤ 𝑢1,                       

𝑐
1 ― 𝑝

𝑢2

―1 𝑘

― 1 + 𝑟,                    if    𝑝 ≥ 1 ― 𝑢2.              
                 (21)
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Figure 5: SN-LD density [𝜏 = 0,𝜑 = 0,𝑘 = 1.5]

Figure 6: SN-LD cdf[𝜏 = 0,𝜑 = 0,𝑘 = 1.5].

Random samples 𝑋 can be simulated from the SN-GPD by replacing 𝑝 in (21) with 𝑈 where 𝑈 is a uniform 
random variable on (0,1). That is,

                               𝑋 =
𝑄1

𝑈
𝑢1

;𝛼,𝜏,𝜑 ,                              if   𝑈 ≤ 𝑢1,                              

𝑐
1 ― 𝑈

𝑢2

―1 𝑘

― 1 + 𝑟,                 if      𝑈 ≥ 1 ― 𝑢2.                     
                     (22)



A New Hybrid Family of Probability Distributions for Fitting Heavy-tailed Data …

Earthline J. Math. Sci. Vol. 15 No. 3 (2025), 401-417

411

5. Monte Carlo Simulation Study on the Maximum Likelihood Estimator of the Free Parameters of the 
SN-GPD

A Monte Carlo simulation study is carried out to assess the performance and efficiency of the maximum 
likelihood-based estimation algorithm described in Section 3 for obtaining estimates of the free parameters of 
the SN-GPD. The performance of the maximum likelihood estimates is examined for different sample sizes for 
a given combinations of parameter values. The simulation is repeated for 𝑁 = 100 times using the sample sizes 
𝑛 = 100, 250,   800, 1500  and 2500 and parameter combination values 𝑟 = 4.5,𝜏 = 0,𝜑 = 1,𝛼 = 2.5,𝛾 = 5. 
Random samples are simulated from the SN-GPD using (13) and five quantities are computed in the 
simulations, and these include:

(a) Mean estimate (ME) of the maximum likelihood estimator of the parameter 𝜃 = (𝛼 𝜏𝜑 𝑟 𝛾) where

ME =
1
𝑁

𝑁

𝑖=1
𝜃 ;

(b) Average bias (AVB) of the maximum likelihood estimator of the parameter 𝜃 = (𝛼 𝜏𝜑 𝑟 𝛾) where 

AVB =
1
𝑁

𝑁

𝑖=1
𝜃 ― 𝜃 ;

(c) Root mean squared error (RSME) of the maximum likelihood estimator of the parameter 𝜃 =
(𝛼 𝜏𝜑 𝑟 𝛾) where

RMSE = 1
𝑁

𝑁

𝑖=1
𝜃 ― 𝜃

2
;

(d) Coverage probability (CP) of 95% confidence intervals of the parameters 𝜃 = (𝛼 𝜏𝜑 𝑟 𝛾), i.e., the 
percentage of intervals that contain the true value of parameter Θ;

(e) Average width (AW) of 95% confidence intervals of the parameter 𝜃 = (𝛼 𝜏𝜑 𝑟 𝛾).

The results from the simulations are contained in Table 1.

Results from simulations study as presented in Table 1 clearly shows that despite the complexity in terms of 
the composite model structure, the maximum likelihood-based estimation algorithm designed in this paper 
offers a very efficient scheme in the estimation of the free parameters of the model. This is evident in the fact 
that the mean values of each parameter resulting from the given number of simulations are remarkably close to 
the true parameter values. Also, we observe that as the sample size increases, the root mean square error for 
each of the parameters decreases. This has helped to sustain the well-established hypothesis that as the sample 
size increases, the maximum likelihood estimator of a parameter becomes better. We also must mention at this 
point, that composite models of this nature perform better under conditions of large samples and not small 
samples.

Our simulation results have also validated this position. Again, we also observe that the average width of 
95% confidence intervals of the parameters decreases as the sample size increases. This also emphasizes 
improvement in precision in terms of the estimation of the parameters. The average biases as well as the 
coverage probabilities for each of the parameters also emphasize the efficiency of the estimation method. 
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The same process for the simulations can be conducted for the SN-PD and the SN-LD. Different 
combinations of parameters values can equally be chosen for the analysis.

Table 1: Results of Monte Carlo simulations 𝑟 = 4.5,𝜏 = 0,𝜑 = 1,𝛼 = 2.5,𝛾 = 5
Parameter Sample size ME AVB RMSE AW CP

𝑟 𝑛 = 100
𝑛 = 250
𝑛 = 800

𝑛 = 1500
𝑛 = 2500

3.0078
3.1633
3.4754
3.5912
3.8228

-1.4922
-1.3367
-1.0246
-0.9088
-0.6772

1.5558
1.4456
1.0829
0.9491
0.7198

2.0904
1.7264
1.6514
1.5561
1.4013

0.4
0.3
0.5
0.4
0.4

𝜏 𝑛 = 100
𝑛 = 250
𝑛 = 800

𝑛 = 1500
𝑛 = 2500

-0.0792
0.0205
-0.0234
0.0025
0.0003

-0.0042
0.0302
-0.0101
0.0086
0.0029

0.1935
0.0817
0.0502
0.0333
0.0284

1.2845
0.3516
0.1674
0.1259
0.0963

1
0.9
1
1

0.9

𝜑 𝑛 = 100
𝑛 = 250
𝑛 = 800

𝑛 = 1500
𝑛 = 2500

1.0102
0.9760
1.0222
0.9838
1.0005

0.0132
-0.0329
0.0089
-0.0123
0.0027

0.1867
0.1006
0.0502
0.0299
0.0196

0.5485
0.3162
0.1620
0.1176
0.0908

0.9
0.9
0.8
1
1

𝛼 𝑛 = 100
𝑛 = 250
𝑛 = 800

𝑛 = 1500
𝑛 = 2500

2.7901
2.3493
2.6526
2.4119
2.5246

0.0132
-0.0329
0.0089
-0.0122
0.0027

1.9106
0.8572
0.3986
0.2349
0.1555

7.419
2.9131
1.3723
0.8952
0.7273

1
0.9
1

0.9
0.9

𝛾 𝑛 = 100
𝑛 = 250
𝑛 = 800

𝑛 = 1500
𝑛 = 2500

3.4259
5.7917
4.8034
4.5153
4.0469

0.7669
2.8534
-1.3316
-1.5672
-0.0853

6.6839
5.7116
3.1263
2.8178
4.4401

23.1340
21.0899
14.8773
13.7926
18.1339

0.7
0.6
0.7
0.8
0.9

6. Application

In this section, an application of the hybrid distributions framework will be applied to a financial data set: 
the Standard & Poor’s 500 index, often abbreviated as the S&P500 index. The index, which is reported daily 
includes open prices, high prices, low prices, close prices, adjusted close prices and volume of S&P500. We 
shall focus on the index reported for the time period 1st January 1995 to 13th September 2023 with 7226 
observations. The S&P500 index data set can easily be obtained from the Yahoo Finance database. Our goal is 
to model the log returns of the market. The log returns are obtained as the logarithm of the ratio of the current 
adjusted close price to the previous adjusted close price. 
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Figure 7: Log returns of the S&P500 from 1st January 1995 to 13th February 2023.

We fit the SNGPD, SNLD and the SNPD distributions to data and also fit the normal-GPD (N-GPD) by 
Debbabi et al. (2016) to the data and compare the fits of the four distributions. The results are reported in Table 
2. These results include the estimates of the free parameters of the distributions (the estimates of the constraint 
parameters can easily be obtained from the relations specified in the previous sections by substituting the 
estimated values of the free parameters) and their various standard errors of estimate, the log-likelihood value, 
and the Akaike Information Criterion (AIC) value for each of the distribution. The Kolmogorov-Smirnov (K-S) 
statistic is also reported. The density plot (over the histogram of the data), the cdf plot, the Q-Q plots, and the P-
P plots of the four fitted distributions are given by Figures 11-14(a-d).

Table 2: Results of estimation of the free parameters of the models

Distribution SN-GPD SN-PD SN-LD N-GPD

Free 
Parameter 
estimates

𝜏 = ―0.0013

 (0.0006)

𝜑 = 0.0111 

(0.0001)

𝛼 = 01268 

(0.0684)

𝛾 = 0.4200 

(0.0860)

r = 0.0237 

(0.0010)

𝜏 = ―0.0014

 (0.0006)

𝜑 = 0.0111 

(0.0001)

𝛼 = 0135 

(0.0664)

r = 0.0225 

(0.0005)

𝜏 = ―0.0036

 (0.0004)

𝜑 = 0.0117 

(0.0002)

𝛼 = 0.3948 

(0.0511)

k = 0.7611 

(0.1198)

r = 0.0289 

(0.0010) 

μ = ―0.0002

 (1.4e ― 05)

σ = 0.0111 

(9.8e ― 05)

u = 0.0587 

(0.0155)

𝛾 = 0.0186 

(7.2e ― 04)

Loglik 22306.1 22180.57 21992.56 21879.51

AIC ―44602.2 ―44353.1 ―43975.1 ―43751.02

K-S 0.0537 0.0723 0.0894 0.0888
(standard error of estimates in parenthesis)
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Figure 11 (a-d): Fitted SN-GPD model density, cdf, quantile and probabilities.

Figure 12 (a-d): Fitted SN-PD model density, cdf, quantile and probabilities.
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Figure 13 (a-d): Fitted SN-LD model density, cdf, quantile and probabilities.

Figure 14 (a-d): Fitted N-GPD model density, cdf, quantile and probabilities.

Results from the application clearly showed that the hybrid models provide very good fit to the data with 
the SN-GPD reporting the best fit since it has the least AIC value.
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7. Conclusion

A general family of two-component hybrid distributions which meets the need of modeling data sets with 
heavy-tails has been espoused in this study. We have also proposed an estimation procedure for estimating the 
free parameters of the family. An application of three distributions of the family to a real data set in finance has 
also been conducted. We hope that the proposed framework will receive further attention in terms of application 
in other areas of discourse.
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