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Abstract

The Cahn-Hilliard equation is a nonlinear partial differential equation that describes spinodal

decomposition, coarsening phenomena, and the dynamics of phase separation for ternary iron alloys.

This article employs a power series technique and the finite element method to obtain analytical and

numerical solutions of the Cahn-Hilliard equation, respectively. For the power series method, the

nonlinear terms in the proposed problem are dealt with using the generalised Cauchy product of power

series, which allows us to obtain an explicit recursion formula for the expansion function coefficient of

the series solution. On the other hand, numerical solution to the Cahn-Hilliard equation is obtained

using the finite element method that is based on the implicit time-stepping scheme and the sparse

linear algebra technique. The obtained analytical and numerical solutions are compared with the exact

solution to illustrate the accuracy and reliability of the proposed methods. The absolute errors obtained

show that the proposed methods are accurate and reliable. Two and three dimensional graphs of the

exact and approximate solutions are presented for comparison purposes.

1 Introduction

Nonlinear partial differential equations (PDEs) are indispensable tools in describing several real-life

phenomena in applied sciences such as fluid mechanics, solid mechanics, engineering, hydrodynamics,

electromagnetic theory, quantum mechanics, elasticity, and reaction-diffusion processes ( [42]). In handling

these nonlinear problems, advanced methods of solutions are required ( [4], [35], [42], [51]). A number

of authors have applied different advanced analytical and numerical methods to solve nonlinear PDEs

arising in real-life situations. For instance, Laplace transform and Adomian decomposition method

were used in [2], simple equation method was employed in [17] and [37], variation of parameters and
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characteristics methods were considered in [34], the first integral method was used in [26], exponential

finite difference method was considered in [22], double Laplace-Sumudu transform coupled with iterative

method was applied in [1]. For several others methods, see [27], [36], [43], [45], [46]. Linear multistep

methods ( [25], [38], [40], [41]) have also been applied to obtain numerical solutions to different classes of

differential equations.

The Cahn-Hilliard equation is a nonlinear fourth-order partial differential equation that describes and

models complicated phase separation, coarsening phenomena in a melted alloy, spinodal decomposition,

and the dynamics of phase separation for ternary iron alloys. This equation, in its simplest, one

dimensional form, is given by ( [13], [44])

∂u(x, t)

∂t
+

∂2

∂x2

(
∂2u(x, t)

∂x2
− u3(x, t) + u(x, t)

)
= 0, x ∈ R. (1.1)

The Cahn-Hilliard equation (1.1) has further been used in the modelling of several other physical system

phenomena, such as phase transitions in material science, polymer, and protein dynamics, and pattern

formation in fluids. A special case of the Cahn-Hilliard equation is the famous Cahn-Allen equation

( [6], [20], [23], [28])

∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
+ u3(x, t)− u(x, t) = 0, (1.2)

which describes chemical reaction, Faraday instability, Rayleigh-Benard convection, and the interaction

of different phases of matter, such as solids and liquids with respect to time t. Recently, Awonusika

( [6]) applied a power series method based on the generalised Cauchy product to obtain approximate

analytical solution of the Cahn-Allen equation (1.2) and its generalisation. For physical, mathematical,

and numerical derivations of the Cahn-Hilliard equation, see [11], [12], [13], [14], [15], [16], [31], and the

references therein.

Many authors have, in the past decades, applied several methods to obtain both analytical and

numerical solutions of the Cahn-Hilliard equation. Alikakos et al. in [3] showed, using asymptotic

expansion and spectral methods, that the level surfaces of solutions to the Cahn-Hilliard equation

converges to the Hele-Shaw equation provided that the classical solutions of the latter exist. The author

in [49] presented a detailed review on the well-posedness and long-time behaviour of global solutions of

the Cahn-Hilliard equation. Hussain et al. [24] recently considered exact solutions of the Cahn-Hilliard

equation in terms of Weierstrass-elliptic and Jacobi-elliptic functions using the F -expansion method.

In [18], the authors studied the regularisation and strict separation properties of the unique solution of

the Cahn-Hilliard-Oono equation. In [19], the authors considered energy law preserving method for the

numerical investigation of the Cahn-Allen and Cahn-Hilliard equations. In [30], Kim et al. presented a

review on the applications and computational simulation results of the Cahn-Hilliard equation. In [44],

the author studied spinodal decomposition and coarsening properties of the Cahn-Hilliard equation. For

other analytical and numerical investigations of the Cahn-Hilliard equation, see [29], [33], [50].
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One of the challenges posed in solving PDEs numerically arise from its higher-order spatial derivatives

and its nonlinear terms. Standard numerical methods such as finite differences can be inefficient or

unstable without careful discretizations, making finite element method (FEM) an attractive alternative.

The primary advantage of using FEM is its ability to handle complex geometries and boundary conditions

more naturally than traditional finite difference methods. In this paper, we consider the analytical and

numerical solutions of the Cahn-Hilliard equation (0 ≤ x ≤ 1, 0 < t ≤ 1) [48]

∂u(x, t)

∂t
+

∂2

∂x2

(
∂2u(x, t)

∂x2
− u3(x, t) + u(x, t)

)
− β∂u(x, t)

∂x
= 0, β ∈ R, (1.3)

satisfying the initial condition

u(x, 0) = u0(x). (1.4)

Ugurlu and Kaya in [48], used a modified extended tanh function method to obtain several exact

solutions of the Cahn-Hilliard equation (1.3), and presented approximate solutions using a homotopy

perturbation method together with the Adomian decomposition method. In this paper, we use a power

series technique that is based on the generalised Cauchy product in respect of the nonlinear terms (

[5], [6], [7], [8], [9]) and the finite element method ( [21], [32], [47]) based on the implicit time-stepping

scheme and the sparse linear algebra technique. If β = 0, then equation (1.3) reduces to the classical

Cahn-Hilliard equation (1.1). The proposed power series approach does not require any type of polynomial

or linearisation technique in the simplification of the nonlinear terms, as the generalised Cauch product will

conveniently transform the higher power of series solution into another power series. Thus, an explicit

recursion formula is obtained for the expansion coefficients of the series solution. These coefficients

are space-variable expansion coefficients. A special case in which β = 1 is considered to illustrate the

effectiveness, accuracy, and reliability of the proposed method. Our approximate solutions obtained from

the proposed methods are compared with the exact solution. The absolute errors obtained show that the

proposed methods are effective, accurate, and reliable. Two and three dimensional graphs of the exact

and approximate solutions are presented to illustrate the proposed methods’ reliability and accuracy.

2 Power Series Method of Solution

In this section, we present the proposed power series method of obtaining the analytical solution of

the Cahn-Hilliard equation (1.3) satisfying the initial condition (1.4). In the proposed method, one

assumes that the solution u(x, t) assumes a power series in t with x-variable expansion coefficients. Upon

substituting the assumed series solution into the governing equation requires one to apply the generalised

Cauchy product of multiple power series. Interestingly, the Cauchy product of these series is again a

power series.

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 473-487



476 Peter Oluwafemi Olatunji and Richard Olu Awonusika

Theorem 2.1. For β ∈ R, the Cahn-Hilliard initial value problem (0 ≤ x ≤ 1, 0 < t ≤ 1)

∂u(x, t)

∂t
+

∂2

∂x2

(
∂2u(x, t)

∂x2
− u3(x, t) + u(x, t)

)
− β∂u(x, t)

∂x
= 0, β ∈ R,

u(x, 0) = u0(x),

(2.1)

admits the series solution

u(x, t) =

∞∑
`=0

a`(x)t` =u0(x) + a1(x)t+ a2(x)t2 + a3(x)t3 + · · · ; (2.2)

with the expansion function coefficients a`(x) (` = 1, 2, . . . ) given recursively by

a(`+1)(x) =
A`,3(x) + 6B`,3(x)− a(4)` (x)− a′′` (x) + βa′`(x)

`+ 1
, ` = 0, 1, 2, . . . . (2.3)

Here the variable coefficients A`,3(x) and B`,3(x) (` = 0, 1, 2, . . . ) are given, respectively, by

A`,3(x) =
∑̀
p=0

p∑
q=0

aq(x)ap−q(x)a′′`−p(x), A0,3(x) = (u0(x))2u′′0, (2.4)

B`,3(x) =
∑̀
p=0

p∑
q=0

a′q(x)a′p−q(x)a`−p(x), B0,3(x) = (u′0(x))2u0. (2.5)

Proof. Differentiating, one has(
−uxx + u3 − u

)
xx

= −uxxxx + 3u2uxx + 6 (ux)2 u− uxx. (2.6)

Assuming a formal power series solution in t (about t = 0):

u(x, t) =

∞∑
`=0

a`(x)t` = a0(x) + a1(x)t+ a2(x)t2 + a3(x)t3 + · · · , (2.7)

one has the following differentiation formulae.

∂u(x, t)

∂t
=
∞∑
`=1

`a`(x)t`−1 =
∞∑
`=0

(`+ 1)a`+1(x)t` (2.8)

∂u(x, t)

∂x
=
∞∑
`=0

a′`(x)t` = a′0(x) + a′1(x)t+ a′2(x)t2 + a′3(x)t3 + · · · (2.9)

∂2u(x, t)

∂x2
=
∞∑
`=0

a′′` (x)t` = a′′0(x) + a′′1(x)t+ a′′2(x)t2 + a′′3(x)t3 + · · · (2.10)

∂4u(x, t)

∂x4
=
∞∑
`=0

a
(4)
` (x)t` = a

(4)
0 (x) + a

(4)
1 (x)t+ a

(4)
2 (x)t2 + a

(4)
3 (x)t3 + · · · . (2.11)
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The initial value problem (2.1) now becomes

ut = −uxxxx + 3u2uxx + 6 (ux)2 u− uxx + βux, 0 < x ≤ 1,

u(x, 0) = u0(x).
(2.12)

Upon substituting the differentiation formulae (2.8)-(2.11) into the governing equation (2.12), we get

∞∑
`=0

(`+ 1)a`+1(x)t` = −
∞∑
`=0

a
(4)
` (x)t` + 3

( ∞∑
`=0

a`(x)t`

)2( ∞∑
`=0

a′′` (x)t`

)

+ 6

( ∞∑
`=0

a′`(x)t`

)2( ∞∑
`=0

a`(x)t`

)
−
∞∑
`=0

a′′` (x)t` + β
∞∑
`=0

a′`(x)t`.

(2.13)

Using the Cauchy product ( [5]), we have( ∞∑
`=0

a`(x)t`

)2( ∞∑
`=0

a′′` (x)t`

)
=
∞∑
`=0

A`,3(x)t`

( ∞∑
`=0

a′`(x)t`

)2( ∞∑
`=0

a`(x)t`

)
=
∞∑
`=0

B`,3(x)t`,

where the coefficients A`,3(x) and B`,3(x) are given, respectively, by

A`,3(x) =
∑̀
p=0

p∑
q=0

aq(x)ap−q(x)a′′`−p(x), B`,3(x) =
∑̀
p=0

p∑
q=0

a′q(x)a′p−q(x)a`−p(x). (2.14)

Thus equation (2.13) becomes

∞∑
`=0

(`+ 1)a`+1(x)t` = −
∞∑
`=0

a
(4)
` (x)t` + 3

∞∑
`=0

A`,3(x)t` + 6

∞∑
`=0

B`,3(x)t`

−
∞∑
`=0

a′′` (x)t` + β

∞∑
`=0

a′`(x)t`.

(2.15)

Equating the coefficients of t` (` = 0, 1, 2, . . . ) in (2.15), we obtain

(`+ 1)a`+1(x) = −a(4)` (x) + 3A`,3(x) + 6B`,3(x)− a′′` (x) + βa′`(x). (2.16)

Hence, we obtain the recurrence relation for a`+1(x) (` = 0, 1, 2, . . . ) as required:

a`+1(x) =
3A`,3(x) + 6B`,3(x)− a(4)` (x)− a′′` (x) + βa′`(x)

`+ 1
. (2.17)
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Corollary 2.2. The coefficients a`(x) (` = 1, 2, . . . ) given by the recurrence relation (2.17) admit the

following first values:

a1(x) =3A0,3(x) + 6B0,3(x)− a(4)0 (x)− a′′0(x) + βa′0(x)

=βu′0(x) + 6u0(x)(u′0(x))2 + 3(u0(x))2u′′0(x)− u′′0(x)− u0(4)(x) (2.18)

a2(x) =
3A1,3(x) + 6B1,3(x)− a(4)1 (x)− a′′1(x) + βa′1(x)

2

=
βa′1(x) + 12u0(x)u′0(x)a′1(x) + 6a1(x)(u′0(x))2 + 3(u0(x))2a′′1(x)

2

+
6a1(x)u0(x)u′′0(x)− a′′1(x)− a1(4)(x)

2
(2.19)

a3(x) =
βa′2(x) + 6u0(x)(a′1(x))2 + 12u0(x)u′0(x)a′2(x) + 6a2(x)(u′0(x))2

3

+
12a1(x)u′0(x)a′1(x) + 3(u0(x))2a′′2(x) + 6a2(x)u0(x)u′′0(x)

3

+
6a1(x)u0(x)a′′1(x) + 3(a1(x))2u′′0(x)− a′′2(x)− a2(4)(x)

3
. (2.20)

3 Finite Element Method of Solution

In this section, we present numerical solutions of the Cahn-Hilliard problem

∂u(x, t)

∂t
+

∂2

∂x2

(
∂2u(x, t)

∂x2
− u3(x, t) + u(x, t)

)
− β∂u(x, t)

∂x
= 0, β ∈ R,

u(x, 0) = u0(x)

(3.1)

using the finite element method (FEM) based on discretization. To this end, multiplying the problem

(3.1) by a test function v and integrating over the domain x, one obtains the weak formulation∫ 1

0

(
∂u

∂t
v +

∂2

∂x2

(
∂2u

∂x2
− u3 + u

)
v − β∂u

∂x
v

)
dx = 0. (3.2)

We discretize the spatial domain using piecewise linear basis functions. For the time integration, we

employ an implicit time-stepping scheme, such as the backward Euler method, which provides improved

stability for stiff problems (see [10], [39]) such as the Cahn-Hilliard equation. The discrete form of the

equation can be written as

M
un+1 − un

∆t
+Aun+1 −A(un+1)3 +Aun+1 −Bβun+1 = 0, (3.3)

where M is the mass matrix arising from the time derivative term, A represents the discrete Laplacian

operator, and B denotes the first derivative term, defined, respectively, as

Mij =

∫ 1

0
ωiωjdx, Aij =

∫ 1

0

(
d2ωi

dx2
d2ωj

dx2

)
dx, Bij =

∫ 1

0

dωi

dx
ωjdx. (3.4)
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where ωi and ωj are the basis functions. In the implementation, the nonlinear system obtained is solved

using Newtonâs method.

4 Example

This section presents an illustrative special case of our main result in Theorem 2.1 as well as the finite

element method algorithm presented in Section 3. We give explicit series solutions and numerical solutions

of the initial value problem (1.3) with β = 1. Higher expansion coefficients of the series solution of the

proposed example are obtained using Wolfram Mathematica software 12.0.

The absolute error, A E , is defined by

A E = |uex.(x, t)− uappr.(x, t)| , 0 < x ≤ 1, t > 0. (4.1)

Here, uex.(x, t) represents the exact solution and uappr.(x, t) denotes the approximate solution.

Now, consider the Cahn-Hilliard initial value problem ( [48])

∂u(x, t)

∂t
+

∂2

∂x2

(
∂2u(x, t)

∂x2
− u3(x, t) + u(x, t)

)
− ∂u(x, t)

∂x
= 0, 0 < x ≤ 1,

u(x, 0) = tanh

(√
2

2
x

)
.

(4.2)

The exact solution of the problem (4.2) is

u(x, t) = tanh

[√
2

2
(x+ t)

]
. (4.3)

PSM. Upon setting β = 1, u0(x) = φ = tanh((
√

2/2)x), ψ = sech((
√

2/2)x) in Corollary 2.2, we obtain

u(x, t) =φ+
1

2
ψ2
(√

2− 2φ
(
ψ2 + φ2 − 1

))
t

+

[
− ψ

6

√
2

+
ψ4

√
2
− ψ2φ7 − 12ψ4φ5 + 2ψ2φ5 +

√
2ψ2φ4 +

3ψ6φ3

2
+ 10ψ4φ3

]
t2

+

[
−ψ2φ3 +

ψ4φ2√
2
−
√

2ψ2φ2 +
25ψ8φ

2
− 29ψ6φ

2
+ 2ψ4φ− ψ2φ

2

]
t2 + · · · . (4.4)
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For numerical comparison purposes, we compute the approximate series solution

uPSM(x, t) =φ+
1

2
ψ2
(√

2− 2φ
(
ψ2 + φ2 − 1

))
t

+

[
− ψ

6

√
2

+
ψ4

√
2
− ψ2φ7 − 12ψ4φ5 + 2ψ2φ5 +

√
2ψ2φ4 +

3ψ6φ3

2
+ 10ψ4φ3

]
t2

+

[
−ψ2φ3 +

ψ4φ2√
2
−
√

2ψ2φ2 +
25ψ8φ

2
− 29ψ6φ

2
+ 2ψ4φ− ψ2φ

2

]
t2

+ a3t
3 + · · ·+ a10t

10 (4.5)

using Wolfram Mathematica. The numerical and graphical comparisons of the exact solution (4.3) and

the approximate solution (4.5) are presented in Table 1 and Figures 1-2.

FEM. The FEM is also implemented in Python using sparse matrix techniques for computational

efficiency. The numerical results are compared with the exact solution at different time steps, as shown

in Table 2. A 2D graph and a 3D surface plot of the FEM solution u(x, t) are shown in Figure 3.

5 Results and Discussion

In this paper, we use a power series method and the finite element method to obtain analytical and

numerical solutions of the Cahn-Hilliard initial value problem (1.3)-(1.4), respectively. In the case of the

power series method, the nonlinear terms are handled using the generalised Cauchy product, which in

turn, enables us to construct an explicit recursion formula for the expansion variable coefficient of the

series solution. For the finite element method, the implementation leverages sparse matrix structures,

which significantly reduce memory usage and improve computation speed. The method scales well with

increased problem size, making it suitable for large-scale simulations.

In the example presented, the approximate solutions obtained are compared with the given exact

solution. Numerical illustrations of results are presented in Tables 1 and 2. Two dimensional graphs of

power series solutions are illustrated in Figures 1a and 1b for t = 0.002, t = 0.005, respectively. Three

dimensional graphs of exact and approximate series solutions are demonstrated in Figures 2a and 2b,

respectively. While two and three dimensional graphs of finite element solutions are presented in Figures

3a and 3b, respectively. It is clearly observed from these tables and graphs that the exact and approximate

solutions agree excellently, which is a clear indication that the present methods are efficient, accurate, and

reliable in obtaining approximate solutions of nonlinear partial differential equations arising in real-life

applications.
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Table 1: Comparison of exact and approximate (PSM) solutions of Cahn-Hilliard equation (4.2) for

t = 0.002, t = 0.005.

x uex.(x, t) uPSM(x, t) A E uex.(x, t) uPSM(x, t) A E

0.1 0.072000 0.072000 1.38× 10−17 0.074110 0.074110 0.000000

0.2 0.141872 0.141872 0.000000 0.143950 0.143950 3.08× 10−15

0.3 0.210358 0.210358 2.77× 10−17 0.212385 0.212385 3.58× 10−13

0.4 0.276840 0.276840 5.55× 10−17 0.278798 0.278798 4.95× 10−13

0.5 0.340774 0.340774 2.77× 10−16 0.342647 0.342647 2.06× 10−12

0.6 0.401703 0.401703 5.55× 10−17 0.403481 0.403481 4.13× 10−13

0.7 0.459273 0.459273 1.11× 10−16 0.460945 0.460945 8.43× 10−13

0.8 0.513226 0.513226 2.22× 10−16 0.514787 0.514787 7.10× 10−13

0.9 0.563407 0.563407 1.11× 10−16 0.564853 0.564853 1.19× 10−12

1.0 0.609749 0.609749 1.11× 10−16 0.611079 0.611079 7.10× 10−13

Table 2: Comparison of exact and approximate (FEM) solutions of Cahn-Hilliard equation (4.2) for

t = 0.002, t = 0.005.

x uex.(x, t) uFEM(x, t) A E uex.(x, t) uFEM(x, t) A E

0.1 0.07200 0.070592 1.40× 10−3 0.074110 0.070593 6.8× 10−2

0.2 0.141872 0.140482 1.39× 10−3 0.143950 0.140486 3.5× 10−3

0.3 0.210358 0.208998 1.36× 10−3 0.212385 0.209006 3.4× 10−3

0.4 0.276840 0.275521 1.32× 10−3 0.278798 0.275534 3.2× 10−3

0.5 0.340774 0.339507 1.30× 10−3 0.342647 0.339523 3.1× 10−3

0.6 0.401703 0.400500 1.20× 10−3 0.403481 0.400516 3.0× 10−3

0.7 0.459273 0.458140 1.13× 10−3 0.460945 0.458156 2.8× 10−3

0.8 0.513226 0.512171 1.06× 10−3 0.514787 0.512183 2.6× 10−3

0.9 0.563407 0.562433 9.73× 10−4 0.564853 0.562441 2.4× 10−3

1.0 0.609749 0.608859 8.89× 10−3 0.611079 0.608859 2.2× 10−3
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exact. sol.
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x
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0.4

0.5

0.6

uex. (x,0.002)

(a) Exact and power series solutions for t = 0.002.

exact. sol.

approx. sol.

0.4 0.6 0.8 1.0
x

0.1

0.2

0.3

0.4

0.5

0.6

uex. (x,0.005)

(b) Exact and power series solutions for t = 0.005.

Figure 1: 2D graphs of exact and power series solutions of the Cahn-Hilliard equation (4.2).

(a) Exact solution. (b) Approximate power series solution.

Figure 2: 3D graphs of exact and power series solutions of the Cahn-Hilliard equation (4.2).
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(a) Exact and finite element solutions. (b) 3D finite element solution.

Figure 3: 2D and 3D graphs of exact and approximate finite element solutions of the Cahn-Hilliard

equation (4.2).

6 Concluding Remarks

This paper investigated the Cahn-Hilliard equation that describes pattern formation, comprehension of

phase transitions, chemical reaction, and the interaction of different phases of matter. Using a power

series technique, the series solution of the Cahn-Hilliard equation was obtained. A special case of our

main result was considered to illustrate the effectiveness, reliability, and accuracy of the present power

series method. The numerical solutions obtained using the FEM agree with the exact solution. However,

the solutions do not have comparable accuracy to those using the PSM. This is not far fetched, because the

present FEM converges with a quadratic rate of convergence with order 2, while the rate of convergence

of the present PSM is of order 10.
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[17] González-Gaxiola, O. (2022). Solution of nonlinear partial differential equations by Adomian decomposition

method. Studies in Engineering and Exact Sciences, 3, 1-8. https://doi.org/10.54021/seesv3n1-007

[18] Giorgini, A., Grasselli, M., & Miranville, A. (2017). The Cahn-Hilliard-Oono equation with singular

potential. Mathematical Models and Methods in Applied Sciences, 27, 2485-2510. https://doi.org/10.1142/

s0218202517500506

[19] Hua, J., Lin, P., Liu, C., & Wang, Q. (2011). Energy law preserving C0 finite element schemes for phase field

models in two-phase flow computations. Journal of Computational Physics, 230, 7115-7131. https://doi.

org/10.1016/j.jcp.2011.05.013

[20] Hariharan, G. (2014). An efficient Legendre wavelet-based approximation for a few Newell-Whitehead

and Allen-Cahn equations. Journal of Membrane Biology, 247, 371-380. https://doi.org/10.1007/

s00232-014-9638-z

[21] Hauser, J. R. (2009). Numerical methods for nonlinear engineering models. Springer, pp. 883-987. https:

//doi.org/10.1007/978-1-4020-9920-5

[22] Hilal, N., & Injrou, R., & Karroum, R. (2020). Exponential finite difference methods for

solving Newell-Whitehead-Segel equation. Arabian Journal of Mathematics. https://doi.org/10.1007/

s40065-020-00280-3

[23] Hussain, S., Shah, S. A., Ayub, S., & Ullah, A. (2019). An approximate analytical solution of the Allen-Cahn

equation using homotopy perturbation method and homotopy analysis method. Heliyon, 5, e03060. https:

//doi.org/10.1016/j.heliyon.2019.e03060

[24] Hussain, A., Ibrahim, T. F., Birkea, F. M. O., Alotaibi, A. M., Al-Sinan, B. R., & Mukalazi, H. (2024). Exact

solutions for the Cahn-Hilliard equation in terms of Weierstrass-elliptic and Jacobi-elliptic functions. Scientific

Reports, 14, 13100. https://doi.org/10.1038/s41598-024-62961-9

[25] Igbinovia, E., Ogunfeyitimi, S. E., & Ikhile, M. N. O. (2025). Block hybrid trapezoidal-type methods for

solving initial value problems in ordinary differential equations. Earthline Journal of Mathematical Sciences,

15, 345-365. https://doi.org/10.34198/ejms.15325.345365

[26] Jafari, H., Soltani, R., Khalique, C. M., & Baleanu, D. (2013). Exact solutions of two nonlinear partial

differential equations by using the first integral method. Boundary Value Problems, 2013, 117. https://doi.

org/10.1186/1687-2770-2013-117

[27] Khalid, M., & Khan, F. S. (2017). A new approach for solving highly nonlinear partial differential equations

by successive differentiation method. Mathematical Methods in the Applied Sciences, 1-8. https://doi.org/

10.1002/mma.4421

[28] Khan, I., Nawaz, R., Ali, A. H., Akgul, A., & Lone, S. A. (2023). Comparative analysis of the fractional order

Cahn-Allen equation. Partial Differential Equations in Applied Mathematics, 8, 100576. https://doi.org/

10.1016/j.padiff.2023.100576

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 473-487

https://doi.org/10.54021/seesv3n1-007
https://doi.org/10.1142/s0218202517500506
https://doi.org/10.1142/s0218202517500506
https://doi.org/10.1016/j.jcp.2011.05.013
https://doi.org/10.1016/j.jcp.2011.05.013
https://doi.org/10.1007/s00232-014-9638-z
https://doi.org/10.1007/s00232-014-9638-z
https://doi.org/10.1007/978-1-4020-9920-5
https://doi.org/10.1007/978-1-4020-9920-5
https://doi.org/10.1007/s40065-020-00280-3
https://doi.org/10.1007/s40065-020-00280-3
https://doi.org/10.1016/j.heliyon.2019.e03060
https://doi.org/10.1016/j.heliyon.2019.e03060
https://doi.org/10.1038/s41598-024-62961-9
https://doi.org/10.34198/ejms.15325.345365
https://doi.org/10.1186/1687-2770-2013-117
https://doi.org/10.1186/1687-2770-2013-117
https://doi.org/10.1002/mma.4421
https://doi.org/10.1002/mma.4421
https://doi.org/10.1016/j.padiff.2023.100576
https://doi.org/10.1016/j.padiff.2023.100576


486 Peter Oluwafemi Olatunji and Richard Olu Awonusika

[29] Kim, J. (2007). A numerical method for the Cahn-Hilliard equation with a variable mobility. Communications

in Nonlinear Science and Numerical Simulation, 12, 1560. https://doi.org/10.1016/j.cnsns.2006.02.010

[30] Kim, J., Lee, S., Choi, Y., Lee, S., & Jeong, D. (2016). Basic principles and practical applications of the

Cahn-Hilliard equation. Mathematical Problems in Engineering, 2016, 1-11. https://doi.org/10.1155/2016/

9532608

[31] Lee, D., Huh, J.-Y., Jeong, D., Shin, J., Yun, A., & Kim, J. (2014). Physical, mathematical, and numerical

derivations of the Cahn-Hilliard equation. Computational Materials Science, 81, 216-225. https://doi.org/

10.1016/j.commatsci.2013.08.027

[32] Larson, M. G., & Bengzon, F. (2013). The finite element method: Theory, implementation, and applications.

Springer. https://doi.org/10.1007/978-3-642-33287-6

[33] de Mello, E. V. L., Otton, T., & da Silveira, F. (2005). Numerical study of the Cahn-Hilliard equation in one,

two, and three dimensions. Physica A, 347, 429. https://doi.org/10.1016/j.physa.2004.08.076

[34] Mhadhbi, N., Gana, S., & Alsaeedi, M. F. (2024). Exact solutions for nonlinear partial differential equations

via a fusion of classical methods and innovative approaches. Scientific Reports, 14, 6443. https://doi.org/

10.1038/s41598-024-57005-1

[35] Nair, S. (2011). Advanced topics in applied mathematics: For engineering and the physical sciences. Cambridge

University Press. https://doi.org/10.1017/CBO9780511976995

[36] Nirmala, A. N., & Kumbinarasaiah, S. (2024). Numerical solution of nonlinear Hunter-Saxton equation,

Benjamin-Bona Mahony equation, and Klein-Gordon equation using Hosoya polynomial method. Results in

Control and Optimization, 14, 100388. https://doi.org/10.1016/j.rico.2024.100388

[37] Nofal, T. A. (2016). Simple equation method for nonlinear partial differential equations and its applications.

Journal of the Egyptian Mathematical Society, 24, 204-209. https://doi.org/10.1016/j.joems.2015.05.

006

[38] Olatunji, P. O., & Ikhile, M. N. O. (2020). Variable order nested hybrid multistep methods for stiff ODEs.

Journal of Mathematical and Computational Science, 10 (1), 78-94. https://doi.org/10.28919/jmcs/4147

[39] Olatunji, P. O., & Ikhile, M. N. O. (2020). Strongly regular general linear methods. Journal of Scientific

Computing, 82 (7), 1-25. https://doi.org/10.1007/s10915-019-01107-w

[40] Olatunji, P. O., & Ikhile, M. N. O. (2021). FSAL mono-implicit Nordsieck general linear methods with inherent

Runge-Kutta stability for DAEs. Journal of the Korean Society for Industrial and Applied Mathematics, 25 (4),

262-295.

[41] Olatunji, P. O., Ikhile, M. N. O., & Okuonghae, R. I. (2021). Nested second derivative two-step Runge-Kutta

methods. International Journal of Applied and Computational Mathematics, 7, 1-39. https://doi.org/10.

1007/s40819-021-01169-1
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http://www.earthlinepublishers.com

https://doi.org/10.1016/j.cnsns.2006.02.010
https://doi.org/10.1155/2016/9532608
https://doi.org/10.1155/2016/9532608
https://doi.org/10.1016/j.commatsci.2013.08.027
https://doi.org/10.1016/j.commatsci.2013.08.027
https://doi.org/10.1007/978-3-642-33287-6
https://doi.org/10.1016/j.physa.2004.08.076
https://doi.org/10.1038/s41598-024-57005-1
https://doi.org/10.1038/s41598-024-57005-1
https://doi.org/10.1017/CBO9780511976995
https://doi.org/10.1016/j.rico.2024.100388
https://doi.org/10.1016/j.joems.2015.05.006
https://doi.org/10.1016/j.joems.2015.05.006
https://doi.org/10.28919/jmcs/4147
https://doi.org/10.1007/s10915-019-01107-w
https://doi.org/10.1007/s40819-021-01169-1
https://doi.org/10.1007/s40819-021-01169-1


Power Series and Finite Element Methods for Solving Cahn-Hilliard Equation 487

[43] Salas, A. H. (2012). Solving nonlinear partial differential equations by the sn-ns method. Abstract and Applied

Analysis, 2012, 340824, 25 pages. https://doi.org/10.1155/2012/340824

[44] Scheel, A. (2015). Spinodal decomposition and coarsening fronts in the Cahn-Hilliard equation. Journal of

Dynamics and Differential Equations. https://doi.org/10.1007/s10884-015-9491-5

[45] Singh, I., & Kumar, S. (2017). Efficient hybrid method for solving special type of nonlinear partial differential

equations. Numerical Methods for Partial Differential Equations, 29 pages. https://doi.org/10.1002/num.

22227

[46] Singh, P., & Sharma, D. (2018). Convergence and error analysis of series solution of nonlinear partial differential

equation. Nonlinear Engineering, 7, 303-308. https://doi.org/10.1515/nleng-2017-0113

[47] Tekkaya, A. E., & Soyarslan, C. (2014). Finite element method. In L. Laperrière & G. Reinhart (Eds.), CIRP

Encyclopedia of Production Engineering. Springer. https://doi.org/10.1007/978-3-642-20617-7_16699

[48] Ugurlu, Y., & Kaya, D. (2008). Solutions of the Cahn-Hilliard equation. Computers and Mathematics with

Applications, 56, 3038-3045. https://doi.org/10.1016/j.camwa.2008.07.007

[49] Wu, H. (2022). A review on the Cahn-Hilliard equation: Classical results and recent advances in dynamic

boundary conditions. Electronic Research Archive, 30, 2788-2832. https://doi.org/10.3934/era.2022143

[50] Li, D., & Zhong, C. (1998). Global attractor for the Cahn-Hilliard system with fast growing nonlinearity.

Journal of Differential Equations, 149, 191. https://doi.org/10.1006/jdeq.1998.3429

[51] Yakushevich, L. V. (1998). Nonlinear Physics of DNA. Wiley, New York, NY, USA.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium,

or format for any purpose, even commercially provided the work is properly cited.

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 473-487

https://doi.org/10.1155/2012/340824
https://doi.org/10.1007/s10884-015-9491-5
https://doi.org/10.1002/num.22227
https://doi.org/10.1002/num.22227
https://doi.org/10.1515/nleng-2017-0113
https://doi.org/10.1007/978-3-642-20617-7_16699
https://doi.org/10.1016/j.camwa.2008.07.007
https://doi.org/10.3934/era.2022143
https://doi.org/10.1006/jdeq.1998.3429
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Power Series Method of Solution
	Finite Element Method of Solution
	Example
	Results and Discussion
	Concluding Remarks

