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Abstract

In the open disc {ζ ∈ C : |ζ| < 1} = D, we present a family of bi-univalent functions g(ζ) = ζ+
∞∑
j=2

djζ
j

associated with the (p, q)-derivative operator and Lucas-Balancing polynomials. For members of this

family, we obtain the upper bounds for |d2|, |d3|, and |d3 − ξd22|, ξ ∈ R. The new implications of the

main results are also discussed, along with relevant connections to earlier research.

1 Preliminaries

A generalization of the ordinary calculus without the use of limit concepts is the q-calculus. Jackson

presented the use and application of the q-calculus in [29]. The extension of the q-calculus to the
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(p, q)-calculus was taken into account by the researchers. At about the same time, in 1991, the

(p, q)-number and the (p, q)-calculus were first analyzed by Arik [6], Brod [11], Chakrabarti [16], Wach

[54], and others. In [6], the (p, q)-number was presented in order to study Fibonacci oscillators. A

(p, q)-Harmonic oscillator can be constructed thanks to the (p, q)-number investigation in [11]. In [16],

the (p, q)-number was studied to unify various q-oscillator algebra types. In [54], the (p, q)-numbers are

examined in order to determine the (p, q)-Stirling numbers. Building on the aforementioned publications,

since 1991, a large number of researchers have investigated the (p, q)-calculus in a range of scientific

domains. The results presented in [30] provided an embedding syntax for q-series into a (p, q)-series.

Moreover, they discovered some outcomes that matched (p, q)-extensions of the established q-identities. A

corresponding extension of the q-identities yields the (p, q)-series (see, for instance, [5]). We give some basic

explanations of the concepts in (p, q)-calculus. [j]p,q = pj−1 + pj−2q+ · · ·+ p2qj−3 + pqj−2 + qj−1 = pj−qj
p−q ,

0 < q < p ≤ 1, is the formula for the (p, q)-bracket number, which is an extension of q-number
1−qj
1−q = [j]q (q 6= 1)(refer to [28]). We remark that [j]p,q is symmetric and that [j]p,q=[j]q if p = 1.

Definition 1.1. [52] The (p, q)-derivative of ϕ is defined by

Dp,qϕ(ζ) =
ϕ(pζ)− ϕ(qζ)

(p− q)ζ
(ζ 6= 0), andDp,qϕ(0) = ϕ′(0), provided ϕ′(0) exists,

where the function ϕ is defined on the complex plane C and 0 < q < p ≤ 1.

We know that Dp,qζ
j = [j]p,qζ

j−1 and Dp,q log(ζ) = log(p/q)
(p−q)ζ . If p = 1, q → 1−, then [j]p,q → j, and

Dp,qϕ(ζ) → ϕ′(ζ), as well. In particular, Dp,q(aϕ1(ζ) + bϕ2(ζ)) = aDp,qϕ1(ζ) + bDp,qϕ2(ζ), where a

and b are constants. The quotient and product rules are satisfied by the (p, q)-derivative (see [39]). The

(p, q)-analogues of some trigonometric functions are defined using the exponential functions [12,19,52].

Consider the normalized analytic function θ in {ζ ∈ C : |ζ| < 1} = D, which is provided by

θ(ζ) = ζ +

∞∑
j=2

djζ
j , (1.1)

and let A be the class of all such functions. Let S = {θ ∈ A : θ is univalent in D}. If θ ∈ A is the kind

(1.1), then

Dp,qθ(ζ) = 1 +

∞∑
j=2

[j]p,qdjζ
j−1, (ζ ∈ D), (1.2)

According to the widely recognized Koebe result (see [20]), every function θ ∈ S has an inverse, which

is given by

θ−1(ω) = ω − d2ω
2 + (2d2

2 − d3)ω3 − (5d3
2 − 5d2d3 + d4)ω4 + · · · = Θ(ω), (1.3)

satisfying ζ = θ−1(θ(ζ)), ω = θ(θ−1(ω)), |ω| < r0(θ), r0(θ) ≥ 1/4, and ζ, ω ∈ D.
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Levin first introduced the concept of bi-univalent functions in his investigation [31]. These are functions

θ ∈ A, where θ and θ−1 are both univalent in D, and Σ represents the set of all bi-univalent functions. For

example, 1
2 log

(
1+ζ
1−ζ

)
, ζ

1−ζ and − log(1− ζ) are elements in the Σ family. That being said, even though

S contains ζ − ζ2

2 , ζ
1−ζ2 , and the Koebe function, they do not belong in Σ. Refer to [9, 10, 51] and the

citation given in these papers for a succinct study and to learn about the traits of the set Σ. The results

of Srivastava et al. [42] triggered the recent surge in research on the bi-univalent function family. Several

intriguing special families of Σ have been studied by numerous researchers since this article revived the

topic (see [13,14,22]).

Several subfamilies of the family Σ were studied using the (p, q)-calculus. The (p, q)-starlike and

(p, q)-convex function families are explored in [43] using the subordination principle. Many studies have

also been presented and investigated certain Σ subfamilies defined using the (p, q)-differential operators

(see [2, 3, 17,53]).

The focus at the moment is on functions that are subordinate to known special polynomials and

belong to a specific σ family. See [1, 23, 44, 47, 49, 50] for further details on these. The Lucas-Balancing

polynomials are one type of these polynomials that has caught the interest of researchers.

Cj represents the Balancing numbers (BN), which satisfy the recurrence relation (RR) (see [7])

Cj+1 = 6Cj − Cj−1, (C0 = 1, C1 = 1, j ≥ 1).

A Lucas-Balancing numbers (LBN) sequence is Bj =
√

8C2
j + 1, j ≥ 1. It satisfies the RR Bj+1 = 6Bj −

Bj−1, j ≥ 1, with B0 = 1 and B1 = 3. These numbers have been examined in [18,25,26,35,37]. Naturally

occurring extensions of BN and LBN are known as Balancing polynomials (BP) and Lucas-Balancing

polynomials (LBP), respectively. The recursive definition of BP, represented by Cj(κ), is

Cj(κ) = 6κCj−1(κ)− Cj−2(κ), (C0(κ) = 0, C1(κ) = 1, j ≥ 2),

where κ ∈ C. It is evident that C2(κ) = 6κ, C3(κ) = 36κ2− 1, C4(κ) = 216κ3− 12κ, and so forth. The

recursive definition of LBP, denoted by Bj(κ),κ ∈ C, is given by

Bj(κ) = 6κBj−1(κ)− Bj−2(κ), (j ≥ 2,B0(κ) = 1, B1(κ) = 3κ). (1.4)

B2(κ) = 18κ2−1,B3(κ) = 108κ3−9κ, ... are evident from (1.4). To learn more about this field, researchers

can visit [8, 32,36,38]. According to [24], the generating function (GF) of the LBP is represented by

B(κ, ζ) :=

∞∑
j=0

Bj(κ)ζj =
1− 3κζ

1− 6κζ + ζ2
, (1.5)

where κ ∈ [−1, 1], and ζ ∈ D.
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Definition 1.2. For θ ∈ A, the (p, q)-analogue of the Swamy operator [45] is defined as follows:

W ν,µ,0
p,q θ(ζ) = θ(ζ),

W ν,µ,1
p,q θ(ζ) =

νθ(ζ) + µzDp,qθ(ζ)

ν + µ
, · · · ,

W ν,µ,k
p,q θ(ζ) = W ν,µ

p,q (W ν,µ,k−1
p,q θ(ζ)),

where 0 < q < p ≤ 1, k ∈ N, µ ≥ 0, ν ∈ R with ν + µ > 0, and ζ ∈ D.

Remark 1.1. i). For θ(ζ) given by (1.1), we have

W ν,µ,k
p,q θ(ζ) = ζ +

∞∑
j=2

(
µ[j]p,q + ν

µ+ ν

)k
djζ

j , (1.6)

ii). The operator W ν,µ,k
p,q reduces to the (p, q)-analogue of the operator described by Selvaraj et al.

in [41] if we assume that ν = 0 and µ = 1.

iii). If ν = 1−µ, µ ≥ 0, then Aµ,kp,q : A → A is (p, q)-analogue of Al-Oboudi differential operator, where

Aµ,kp,q = W 1−µ,µ,k
p,q and for θ(ζ) given by (1.1), we have

Aµ,kp,q θ(ζ) = ζ +

∞∑
j=2

(µ([j]p,q − 1) + 1)k djζ
j . (1.7)

iv). If ν = l + 1 − µ, l > −1, µ ≥ 0, then C l,µ,kp,q : A → A is Catas operator’s (p, q)-analogue, where

C l,µ,kp,q = W l+1−µ,µ,k
p,q and for θ(ζ) given by (1.1), we have

C l,µ,kp,q θ(ζ) = ζ +

∞∑
j=2

(
µ([j]p,q − 1) + l + 1

l + 1

)k
djζ

j . (1.8)

v). Three operators defined in [45], [4], and [15] are obtained by taking q → 1− and p = 1 in (1.6),

(1.7), and (1.8), respectively. Swamy operator is extended to k-valent functions in [46].

For functions ϑ1, ϑ2∈ A, ϑ1 is subordinate to ϑ2, if there is a Schwarz function κ(ζ) in D with κ(0) = 0

and |κ(ζ)| < 1, with ϑ1(ζ) = ϑ2(κ(ζ)), ζ ∈ D. This is shown as ϑ1 ≺ ϑ2 or ϑ1(ζ) ≺ ϑ2(ζ) (ζ ∈ D).

Especially, if ϑ2 ∈ S, then ϑ1(ζ) ≺ ϑ2(ζ) ⇔ ϑ1(0) = ϑ2(0) and ϑ1(D) ⊂ ϑ2(D).

We propose a subfamily of Σ using the (p, q)-analogue of the Swamy derivative operator, subordinate

to LBP Bj(κ) as in (1.4) with the GF as in (1.5). This subfamily is inspired by the recent developments

on functions ∈ Σ related to LBP [27,48].

Let N := {1, 2, 3, · · · } and R := (−∞,+∞). The parameters p and q in this paper always satisfy

0 < q < p ≤ 1. The function θ−1(ω) = Θ(ω) as in (1.3) and B(κ, ζ) as in (1.5) are employed throughout

this paper unless oterwise noted.

http://www.earthlinepublishers.com



Bi-univalent Function Subfamilies Associated with the (p, q)-derivative ... 277

Definition 1.3. A function θ ∈ Σ is said to be the member of the family Eδ,kΣ,p,q(x, ν, µ), if

1

2

ζ(W ν,µ.k
p,q θ(ζ))′

θ(ζ)
+

(
ζ(W ν,µ.k

p,q θ(ζ))′

θ(ζ)

) 1
δ

 ≺ B(κ, ζ),

and

1

2

ω(W ν,µ.k
p,q Θ(ω))′

Θ(ω)
+

(
ω(W ν,µ.k

p,q Θ(ω))′

Θ(ω)

) 1
δ

 ≺ B(κ, ω),

where ζ, ω ∈ D, κ ∈ (−1
2 , 1], k ∈ N, 0 < δ ≤ 1, µ ≥ 0, and ν ∈ R satisfying ν + µ > 0.

The family Eδ,kΣ,p,q(κ, ν, µ) contains numerous new subclasses of Σ for specific chioces of δ, ν, p, and q as

listed below:

Example 1.1. Fδ,kΣ,p,q(κ, µ) ≡ Eδ,kΣ,p,q(κ, 1− µ, µ),κ ∈ (−1
2 , 1], k ∈ N, 0 < δ ≤ 1, and µ ≥ 0 is the set of

functions θ in Σ that meet

1

2

ζ(Aµ.kp,q θ(ζ))′

θ(ζ)
+

(
ζ(Aµ.kp,q θ(ζ))′

θ(ζ)

) 1
δ

 ≺ B(κ, ζ),

and

1

2

ω(Aµ.kp,q Θ(ω))′

Θ(ω)
+

(
ω(Aµ.kp,q Θ(ω))′

Θ(ω)

) 1
δ

 ≺ B(κ, ω),

where ζ, ω ∈ D.

Example 1.2. Gδ,k
Σ,p,q(κ, l, µ) ≡ Eδ,kΣ,p,q(κ, l−µ+ 1, µ),κ ∈ (−1

2 , 1], k ∈ N, 0 < δ ≤ 1, l > −1, and µ ≥ 0

is the set of θ ∈ Σ that satisfy

1

2

ζ(C l,µ.kp,q θ(ζ))′

θ(ζ)
+

(
ζ(C l,µ.kp,q θ(ζ))′

θ(ζ)

) 1
δ

 ≺ B(κ, ζ),

and

1

2

ω(C l,µ.kp,q Θ(ω))′

Θ(ω)
+

(
ω(C l,µ.kp,q Θ(ω))′

Θ(ω)

) 1
δ

 ≺ B(κ, ω),

where ζ, ω ∈ D.

Example 1.3. HkΣ,p,q(x, ν, µ) ≡ E1,k
Σ,p,q(x, ν, µ) is the set of θ ∈ Σ functions that fulfill

ζ(W ν,µ.k
p,q θ(ζ))′

θ(ζ)
≺ B(κ, ζ), and

ω(W ν,µ.k
p,q Θ(ω))′

Θ(ω)
≺ B(κ, ω), ζ, ω ∈ D,

Earthline J. Math. Sci. Vol. 15 No. 3 (2025), 273-287
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where κ ∈ (−1
2 , 1], k ∈ N, µ ≥ 0, and ν ∈ R such that ν + µ > 0.

Example 1.4. Given the set Eδ,kΣ,p,q(x, ν, µ), if q → 1−, p = 1, we obtain Kδ,kΣ (x, ν, µ), which is a

collection of θ ∈ Σ functions that fulfill

1

2

{
ζ(Wν,µ.kθ(ζ))′

θ(ζ)
+

(
ζ(Wν,µ.kθ(ζ))′

θ(ζ)

) 1
δ

}
≺ B(κ, ζ),

and

1

2

{
ω(Wν,µ.kΘ(ω))′

Θ(ω)
+

(
ω(Wν,µ.kΘ(ω))′

Θ(ω)

) 1
δ

}
≺ B(κ, ω),

where Wν,µ.k ≡W ν,µ,k
p=1,q→1− , k ∈ N, 0 < δ ≤ 1, µ ≥ 0, ν ∈ R satisfying ν+µ > 0, κ ∈ (−1

2 , 1], and ζ, ω ∈ D.

Section 2 contains estimates for |d2| and |d3| for functions ∈ Sτ
Σ,p,q(κ, ν, µ) as well as Fekete-Szegö

inequality [21]. Along with relevant connections to the earlier findings, there are also some fascinating

implications of the primary finding.

2 Primary Findings

First, we determine the limits for |d2|, |d3|, and a Fekete-Szegö inequality for the members in Sδ,k
Σ,p,q(x, ν, µ).

Theorem 2.1. Let k ∈ N, 0 < δ ≤ 1, µ ≥ 0, ξ ∈ R, ν ∈ R with ν + µ > 0, and κ ∈ (−1
2 , 1]. If a function

θ ∈ Eδ,kΣ,p,q(x, ν, µ), then

i). |d2| ≤
6δκ
√

3κ√
|((1− δ)M2 + (N −M)2δ(δ + 1))9κ2 − (1 + δ)2M2(18κ2 − 1)|

, (2.1)

ii). |d3| ≤
6δκ

N (1 + δ)
+

108δ2κ3

|((1− δ)M2 + (N −M)2δ(δ + 1))9κ2 − (1 + δ)2M2(18κ2 − 1)|
, (2.2)

and

iii). |d3 − ξd2
2| ≤

 6δκ
(1+δ)N ; |1− ξ| ≤ J

108δ2κ3 |1−ξ|
|((1−δ)M2+(N−M)2δ(δ+1))9κ2−(1+δ)2M2(18κ2−1)| ; |1− ξ| ≥ J ,

(2.3)

where

J =
|((1− δ)M2 + (N −M)2δ(δ + 1))9κ2 − (1 + δ)2M2(18κ2 − 1)|

18δ(1 + δ)Nκ2
, (2.4)

M =

(
2

(
µ[2]p,q + ν

µ+ ν

)k
− 1

)
, (2.5)
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and

N =

(
3

(
µ[3]p,q + ν

µ+ ν

)k
− 1

)
. (2.6)

Proof. Let θ ∈ Eδ,kΣ,p,q(x, ν, µ). Definition 1.3 can then be used to write

1

2

ζ(W ν,µ.k
p,q θ(ζ))′

θ(ζ)
+

(
ζ(W ν,µ.k

p,q θ(ζ))′

θ(ζ)

) 1
δ

 = B(κ,m(ζ)), (2.7)

and

1

2

ω(W ν,µ.k
p,q Θ(ω))′

Θ(ω)
+

(
ω(W ν,µ.k

p,q Θ(ω))′

Θ(ω)

) 1
δ

 = B(κ, n(ω)), (2.8)

where

m(ζ) = m1ζ +m2ζ
2 +m3ζ

3 + ..., and n(ω) = n1ω + n2ω
2 + n3ω

3 + ..., ζ, ω ∈ D (2.9)

are some holomorphic functions with |m(ζ)| < 1, |n(ω)| < 1, ζ, ω ∈ D andm(0) = 0 = n(0). We known

that

|mi| ≤ 1, and |ni| ≤ 1, i ∈ N. (2.10)

In light of (2.9), we obtain by substituting B(κ, ζ) from (1.5) in (2.7) and (2.8):

B(κ,m(ζ)) = 1 + B1(κ)m1ζ + [B1(κ)m2 + B2(κ)m2
1]ζ2 + ... (2.11)

and

B(κ, n(ω)) = 1 + B1(κ)n1ω + [B1(κ)n2 + B2(κ)n2
1]ω2 + ... . (2.12)

The inference from (2.7) and (2.8) is that

1

2

ζ(W ν,µ.k
p,q θ(ζ))′

θ(ζ)
+

(
ζ(W ν,µ.k

p,q θ(ζ))′

θ(ζ)

) 1
δ

 = (2.13)

1 +

(
1 + δ

2δ

)
Md2ζ +

((
1 + δ

2δ

)
(Nd3 −Md2

2) +

(
1− δ
4δ2

)
M2d2

2

)
ζ2 + ...

and

1

2

ω(W ν,µ.k
p,q Θ(ω))′

Θ(ω)
+

(
ω(W ν,µ.k

p,q Θ(ω))′

Θ(ω)

) 1
δ

 = (2.14)

1 +

(
1 + δ

2δ

)
Md2ω +

((
1 + δ

2δ

)
(N (2d2

2 − d3)−Md2
2) +

(
1− δ
4δ2

)
M2d2

2

)
ω2 + ... ,
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in which M and N are, respectively, as indicated in (2.5) and (2.6). Equations (2.13) and (2.14) imply

that (
1 + δ

2δ

)
Md2 = B1(κ)m1, (2.15)(

1 + δ

2δ

)
(Nd3 −Md2

2) +

(
1− δ
4δ2

)
M2d2

2 = B1(κ)m2 + B2(κ)m2
1, (2.16)

−
(

1 + δ

2δ

)
Md2 = B1(κ)n1 (2.17)

and (
1 + δ

2δ

)
(N (2d2

2 − d3)−Md2
2) +

(
1− δ
4δ2

)
M2d2

2 = B1(κ)n2 + B2(κ)n2
1. (2.18)

From (2.15) and (2.17), we have

m1 = −n1 (2.19)

and also (
(1 + δ)2

2δ2

)
M2d2

2 = (m2
1 + n2

1)(B1(κ))2. (2.20)

When (2.16) and (2.18) are added, we get

2

[(
1 + δ

δ

)
(N −M) +

(
1− δ
2δ2

)
M2

]
d2

2 = B1(κ)(m2 + n2) + B2(κ)(m2
1 + sn2

1). (2.21)

Substituting the value of m2
1 + n2

1 from (2.20) in (2.21), we get

d2
2 =

2δ2(B1(κ))3(m2 + n2)

[((1− δ)M2 + (N −M)2δ(δ + 1))(B1(κ))2 − (1 + δ)2M2B2(κ)]
, (2.22)

which produces (2.1), when applied (2.10).

After deducting (2.18) from (2.16) and using (2.19), we arrive at

d3 = d2
2 +

δB1(κ)(m2 − n2)

(1 + δ)N
. (2.23)

The inequality that results from this is as follows:

|d3| ≤ |d2|2 +
|B1(κ)||m2 − n2|(

δ+1
δ

)
U [3]p,q

. (2.24)

Applying (2.10) for m2 and n2, we obtain (2.5) from (2.1) and (2.24).

From (2.22) and (2.23), for ξ ∈ R, we get in view of (1.4),

|d3 − ξd2
2| = |L1(x)|

∣∣∣∣(F (ξ, x) +
δ

(1 + δ)N

)
m2 +

(
F (ξ, x)− δ

(1 + δ)N

)
n2

∣∣∣∣ ,
http://www.earthlinepublishers.com
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where

F (ξ, x) =
2δ2(1− ξ)B2

1(κ)[
((1− δ)M2 + (N −M)2δ(δ + 1))B2

1(κ)− (1 + δ)2M2B2(κ)
] .

Clearly

|d3 − ξd2
2| ≤


2δ|B1(κ)|
(1+δ)N ; 0 ≤ |B(ξ, x)| ≤ δ

N (1+δ)

2|B1(κ)||F (ξ, x)| ; |B(ξ, x)| ≥ δ
N (1+δ) ,

with J as in (2.4), brings us to the conclusion (2.3). Thus, the proof is finished.

Corollary 2.1. Let ν = 1 − µ in Theorem 2.1. Then for a function θ ∈ Fδ,kΣ,p,q(κ, µ), the upper bounds

of |d2|, |d3|, and |d3 − ξd2
2|, ξ ∈ R, are given by (2.1), (2.5), and (2.3), respectively, with M = M1 =

2µ([2]p,q − 1)k + 1, and N = N1 = 3µ([3]p,q − 1)k + 2. M and N must be replaced with M1 and N1 for

J in (2.4).

Corollary 2.2. Let ν = 1+ l−µ (l > −1), in Theorem 2.1. Then for θ ∈ Gδ,k
Σ,p,q(κ, l, µ), the upper bounds

of |d2|, |d3|, and |d3 − ξd2
2|, ξ ∈ R, are given by (2.1), (2.5), and (2.3), respectively, with M = M2 =(

2
(
l+1+µ([2]p,q−1)

l+1

)k
− 1

)
, and N = N2 =

(
3
(
l+1+µ([3]p,q−1)

l+1

)k
− 1

)
. M and N are to be replaced with

M2 and N2 for J in (2.4).

δ = 1 Theorem 2.1 suggests

Corollary 2.3. Let κ ∈ (−1
2 , 1], k ∈ N, ξ ∈ R, µ ≥ 0, and ν ∈ R with ν + µ > 0. If a function θ

∈ HkΣ,p,q(x, ν, µ), then

i). |d2| ≤
3κ
√

3κ√
|(N −M)9κ2 −M2(18κ2 − 1)|

,

ii). |d3| ≤
27κ2

|(N −M)9κ2 −M2(18κ2 − 1)
+

3κ
N

and

iii). |d3 − ξd2
2| ≤

3κ
N ; |1− ξ| ≤ J1

27x3 |1−ξ|
|(N−M)9κ2−M2(18κ2−1)| ; |1− ξ| ≥ J1,

where J1 =

∣∣∣∣(N −M)9κ2 −M2(18κ2 − 1)

9Nκ2

∣∣∣∣,M and N are given by (2.5) and (2.6), respectively.

Remark 2.1. The result of Hussen and Illafe [27, Corollary 1] is obtained by allowing k = 0 in the above

corollary.

Corollary 2.4. In Theorem 2.1, let q → 1− and p = 1. Then for any function θ ∈ Yδ,k
Σ (κ, ν, µ), the

upper bounds of |d2|, |d3|, and |d3 − ξd2
2|, ξ ∈ R, are given by (2.1), (2.5), and (2.3), respectively, with

M = M3 =

(
2
(
ν+2µ
ν+µ

)k
− 1

)
, and N = N3 =

(
3
(
ν+3µ
ν+µ

)k
− 1

)
. For J in (2.4), M and N are to be

substituted with M3 and N3, respectively.

Earthline J. Math. Sci. Vol. 15 No. 3 (2025), 273-287



282 S. R. Swamy, A. K. Wanas, P. K. Mamatha, G. S. Chauhan and Y. Sailaja

Remark 2.2. k = 0 in the set Yδ,k
Σ (κ, ν, µ) yields the subset Qδ

Σ(κ), 0 < δ ≤ 1, and κ ∈ (−1
2 , 1] which

is a collection of θ ∈ Σ functions that fulfill

1

2

{
ζθ′(ζ)

θ(ζ)
+

(
ζθ′(ζ)

θ(ζ)

) 1
δ

}
≺ B(κ, ζ) and

1

2

{
ωΘ′(ω)

Θ(ω)
+

(
ωΘ′(ω)

Θ(ω)

) 1
δ

}
≺ B(κ, ω),

where ζ, ω ∈ D.

Corollary 2.5. Let 0 < δ ≤ 1 and κ ∈ (−1
2 , 1]. If a function θ ∈ Qδ

Σ(κ), then

i). |d2| ≤
6δκ
√

3κ√
|(1 + δ)2 − (1 + 3δ)9κ2)|

,

ii). |d3| ≤
108δ2κ3

|(1 + δ)2 − (1 + 3δ)9κ2)|
+

3δκ
(1 + δ)

,

and for ξ ∈ R

iii). |d3 − ξd2
2| ≤

 3δκ
(1+δ) ; |1− ξ| ≤ |(1+δ)2−(1+3δ)9κ2)|

36δ(1+δ)κ2

108δ2κ3 |1−ξ|
|(1+δ)2−(1+3δ)9κ2)| ; |1− ξ| ≥ |(1+δ)2−(1+3δ)9κ2)|

36δ(1+δ)κ2 .

Remark 2.3. We derive the result of Hussen and Illafe [27, Corollary 1] by taking δ = 1 in Corollary 2.5.

3 Conclusions

Upper bounds on |d2| and |d3| for funcions in the defined subfamily of σ associated with the

(p, q)-derivative operator subordinate to LB polynomials are established in this study. Furthermore,

for functions in this subfamily, the Fekete-Szegö functional |d3 − µd2
2|, µ ∈ R has been noted. There have

been few implications revealed by choosing the parameters in Theorem 2.1. Additionally, pertinent links

to the ongoing research are found. However, not all of the important subclasses of Σ that are present

in the literature are covered in this paper. For example, authors [33, 34, 40] have studied a number of

subclasses of Σ involving the (p, q)-operator. The interested reader is advised to read these papers and

the related references. Future studies might look into extending obtained results to fractional derivatives,

Toeplitz determinants or higher-order Hankel determinants.
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[15] Cătaş, A. (2007). On certain class of p-valent functions defined by new multiplier transformations. In A. Cătaş
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