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Abstract

Diabetes mellitus is a chronic condition characterized by elevated blood glucose levels, which can lead to severe 
health complications if not properly managed. The increasing prevalence of diabetes worldwide has made it a 
major public health concern. This study formulates and analyzes an optimal control model for diabetes 
management, focusing on minimizing complications and treatment costs. The model is structured around a 
population of diabetic patients, incorporating dynamic interactions between healthy, susceptible, diabetic, 
complication, and treatment populations. An objective functional is defined, integrating costs associated with 
complications and treatment efforts, and is subjected to optimization through control strategies aimed at 
enhancing patient education, regular monitoring, and comprehensive care. The application of the Pontryagin 
Maximum Principle provides a solid theoretical foundation for identifying optimal control strategies. Utilizing a 
fourth-order Runge-Kutta method, the model is simulated under varying control conditions to assess the impact of 
interventions. The results demonstrate that increasing control measures significantly reduces the incidence of 
complications while improving treatment rates. The findings highlight the importance of strategic health 
management interventions in mitigating the burden of diabetes-related complications and emphasize the model's 
applicability in real-world healthcare settings. This research provides a robust framework for policymakers and 
healthcare providers to devise effective strategies that enhance the quality of care for diabetic patients.

1. Introduction 

Diabetes, a chronic metabolic disorder characterized by either insufficient insulin production or ineffective 
insulin utilization, poses a significant global health challenge [1]. Diabetes can result from a combination of 
genetic and environmental factors. A family history of diabetes increases susceptibility [2], while Type 1 
diabetes is linked to autoimmune destruction of insulin-producing beta cells [3]. Type 2 diabetes is commonly 
caused by insulin resistance, often triggered by obesity, physical inactivity, and unhealthy diets [4]. Age, 
ethnicity, and hormonal changes, such as pregnancy or conditions like PCOS, further raise the risk [5]. Other 
contributing factors include high blood pressure, abnormal cholesterol levels, chronic stress, and certain 
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medications [6]. Metabolic syndrome and a history of gestational diabetes also increase the likelihood of 
developing type 2 diabetes [7]. Living with diabetes means facing a gradual onset of long-term complications. 
The longer you navigate this journey—and the more erratic your blood sugar levels—the greater the risk 
becomes for complications that can profoundly impact your life. From heart and blood vessel issues to nerve 
damage and kidney dysfunction, diabetes complications can be severe, potentially leading to disability or even 
death. The pervasive nature of diabetes means it can affect virtually every part of the body, including the feet, 
eyes, and skin. Indeed, for some individuals, these complications serve as the initial indication of diabetes. Foot 
issues, in particular, can escalate and lead to severe complications like neuropathy, skin alterations, calluses, 
foot ulcers, and impaired circulation [8]. 

The prevalence of diabetes has surged over recent decades, with approximately 422 million adults 
worldwide living with the condition in 2014, compared to 108 million in 1980. According to [9], an estimated 
463 million adults aged 20-79 were living with diabetes in 2019, and projections indicate that this number will 
rise to 700 million by 2045 if current trends persist [10]. The rise in diabetes prevalence is attributed to various 
factors, including sedentary lifestyles, unhealthy dietary habits, obesity, aging populations, and genetic 
predisposition. This rise, mirrored by an alarming increase in associated risk factors such as obesity, 
underscores the urgent need for effective management strategies. 

i. In the dynamic landscape of African societies, a profound shift is underway, characterized by both 
urbanization and the increasing influence of Western lifestyles. Urban areas are witnessing a surge in 
materialistic behaviors, with a marked adoption of cosmopolitan norms and the consumption of 
convenience foods, rich in fat, sugar, and salt. Meanwhile, rural regions grapple with nutritional 
deficiencies exacerbated by factors such as drought, poverty, and socio-economic disparity, rather than 
cultural or religious influences. 

ii. This dichotomy in dietary habits is further exacerbated by rapid urban population growth, which has 
strained the production of traditional staples like sorghum, millet, maize, yam, and plantain. 
Consequently, many African nations are facing challenges in ensuring an adequate daily dietary energy 
supply, leading to divergent food patterns between urban and rural dwellers and contributing to the rise 
in diabetes mellitus. South Africa, in particular, grapples with a substantial diabetes burden, with 
estimates suggesting a considerable number of undiagnosed cases alongside known diabetics. The 
prevalence of diabetes varies across different ethnic communities, with higher rates observed in certain 
populations. This underscores the importance of tailored approaches to education and healthcare 
delivery. 

iii. In response to these challenges, there is a pressing need for enhanced nutrition education, particularly 
among the cosmopolitan diabetic population. However, this demand outpaces the capacity of healthcare 
providers, who often face resource constraints. Thus, there is an urgent call for the development of 
innovative and culturally relevant control strategies to meet the evolving needs of diabetic patients in 
Africa.

Several mathematical models have been developed to for the management of diabetes mellitus. [11] 
highlighted diabetes as a chronic disease imposing a substantial and escalating socio-economic burden on 
individuals, families, and society at large. The researchers propose an optimal control framework for modeling 
the progression from pre-diabetes to diabetes, with and without complications. Their work demonstrates the 
existence of an optimal control strategy and employs a numerical implicit finite-difference method to track 
population sizes across various compartments. Results from the model indicate that implementing optimal 
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control measures can lead to a significant reduction in the number of individuals affected by diabetes, both with 
and without complications, over a 10-year period. [12] proposed a deterministic model that employs distinct 
control strategies for two separate compartments: one for managing patients before complications arise and 
another for those already experiencing complications. By treating these groups separately, the study aims to 
provide proactive and comprehensive care to both prevent and mitigate complications. To achieve this, a fixed-
time optimal control problem formulation is utilized to identify the optimal combination of interventions that 
minimize implementation costs and the incidence of complications within the population. Using Pontryagin’s 
maximum principle, the study derives an optimality system and presents numerical solutions from simulations. 
These simulations offer valuable insights into the efficacy of the proposed approach in managing diabetes and 
reducing its burden on individuals and society. [13] addressed diabetes as a chronic ailment imposing a 
significant burden on both individuals and society as a whole. Their study focuses on constructing an optimal 
control mathematical model aimed at managing the development of the diabetic population. The model 
incorporates dynamics related to disabled individuals resulting from diabetes. Additionally, the researchers 
propose an optimal control approach to mitigate the burden of pre-diabetes. The control strategy aims to prevent 
the progression of pre-diabetes to diabetes, both with and without complications. The study discusses the 
existence and characterization of optimal control, with the Pontryagin minimum principle serving as a key 
analytical tool. Results suggest the presence of optimal control in the mathematical optimization problem 
concerning the diabetic population model. Furthermore, the efficacy of the optimal control variable (prevention) 
is shown to be significantly influenced by the number of healthy individuals. [14] introduced an optimal control 
approach to model the progression from pre-diabetes to diabetes, considering the presence or absence of 
complications and the influence of living environment. The research demonstrates the existence of an optimal 
control strategy and employs a numerical implicit finite-difference method to track population sizes within each 
compartment. Furthermore, [15] in their study proposed an optimal control strategy aimed at raising awareness 
among individuals with diabetes about the severity of complications associated with the condition, as well as 
the detrimental effects of an imbalanced lifestyle and environmental factors. Their strategy includes provisions 
for treatment and psychological support. The researchers employ Pontryagin’s maximum principle to delineate 
the optimal controls and utilize an iterative method to solve the resulting optimality system. Numerical 
simulations conducted using MATLAB serve to validate the theoretical analysis. [16] delved into the 
complexities of type 1 diabetes, a severe condition impacting numerous children and adolescents. The disease 
disrupts the pancreas's ability to produce insulin, the hormone crucial for regulating blood sugar levels. Their 
study focuses on a mathematical model encompassing the entire blood glucose-insulin system, derived from 
Bergman’s minimal model and tailored to interpret intravenous glucose tolerance tests (IVGTT). The 
researchers aim to devise a therapeutic regiment tailored to the specific needs of diabetic patients through this 
mathematical model. Using MATLAB/Simulink TM, they illustrate the results obtained from various examples. 
[17] developed and analyzed a mathematical model for the dynamics of diabetes mellitus and its complications, 
incorporating control measures. In this study, the model integrates positive lifestyle choices, such as abstinence 
from alcohol, smoking, and overeating, along with effective management of diabetes as control strategies. The 
analytical solution of the model equations is derived using the Homotopy Perturbation Method, while numerical 
simulations are performed using Maple 18 Mathematical software. The study varies the parameters and presents 
their effects on the model dynamics graphically. The results demonstrated that the two control measures can 
effectively reduce the incidence and evolution of complications of diabetes, thereby lowering the morbidity and 
mortality rates associated with diabetes complications.

In this study, we improved on the work of [17] and applied an optimal control strategy on the formulated 
model and analyze the impact of the control strategies on the incidence of medical complications. The paper is 
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organized as follows: Section 1 is the introduction, Section 2, the compartmental model for the dynamics of 
Diabetes and its complication, formulation of optimal control problem and solution to the problem is obtained, 
discussion of results was done in Section 3 while in Section 4, conclusion was made.

2. The Mathematical Model

The existing model without control measures developed by [17], shown in Figure 2.1, describes the 
dynamics of diabetes and its complications within a population. This compartmental model categorizes the 
population into five distinct groups: healthy individuals (𝐻), individuals at risk of developing diabetes (𝑆), 
diabetics without complications (𝐷), diabetics with complications (𝐶), and diabetics undergoing treatment for 
complications (𝑇). The model tracks the transitions between these groups over time, driven by various rates and 
parameters that reflect the progression of diabetes and its complications.

The original system of differential equations governing these dynamics is as follows:

𝑑𝐻(𝑡)
𝑑𝑡 = 𝛽𝜃 ― 𝜏𝐻(𝑡) + 𝜎𝑆(𝑡) ― 𝜇𝐻(𝑡) (2.1)

𝑑𝑆(𝑡)
𝑑𝑡 = 𝛽(1 ― 𝜃) ― 𝜇𝑆(𝑡) ― 𝛼𝑆(𝑡) ― 𝜎𝑆(𝑡) + 𝜏𝐻(𝑡) (2.2)

𝑑𝐷(𝑡)
𝑑𝑡 = 𝛼𝑆(𝑡) ― 𝜇𝐷(𝑡) ― 𝜆𝐷(𝑡) + 𝜔𝑇(𝑡) (2.3)

𝑑𝐶(𝑡)
𝑑𝑡 = 𝜆𝐷(𝑡) ― 𝛾𝐶(𝑡) ― 𝛿𝐶(𝑡) ― 𝜇𝐶(𝑡)  (2.4)

𝑑𝑇(𝑡)
𝑑𝑡 = 𝛾𝐶(𝑡) ― 𝜔𝑇(𝑡) ― 𝜇𝑇(𝑡) (2.5)

Figure 2.1: Diagram of the model without control.

Table 2.1: Description of variables of the uncontrolled model.

S/N Variables Description

1 𝐻(𝑡) Healthy class

2 𝑆(𝑡) Susceptible class

3 𝐷(𝑡) Diabetics without complications class

4 𝐶(𝑡) Diabetics with complications class

5 𝑇(𝑡) Diabetics with complications undergoing treatment class
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Table 2.2: Description of parameters of the uncontrolled model.

S/N Variables Parameters

1  Probability rate of incidence of diabetes

2  Birth rate

3  Natural mortality rate

4  Rate at which healthy individual become susceptible 

5  Rate at which susceptible individual become healthy 

6  Rate at which D(t) develop a complication 

7  Rate at which C(t) are treated 

8  Rate at which C(t) after treatment return to D(t) 

9  Mortality rate due to complications 

10  Proportion of children born into the healthy class 

11 1 Proportion of children born into the susceptible class

2.1. Formulating the optimal control problem

In this section, we formulate the optimal control problem aimed at minimizing the incidence of medical 
complications in a population of diabetic patients. The process involves two key steps which are: defining the 
control variables and modifying the model equations to include these control variables.

2.2. Definition of the control variables

To effectively manage and reduce the incidence of medical complications among diabetic patients, we 
introduce control variables into the model. These control variables represent practical interventions that can 
influence the rates of disease progression and treatment within the population. Specifically, we consider two 
control measures:

𝑢1(𝑡): This control variable represents a measure aimed at reducing the incidence rate of complications. 

𝑢2(𝑡): This control variable represents a measure aimed at increasing the treatment rate of complications.

2.3. Modification the model equations

The system of differential equations was modified to incorporate the control variables into the existing 
model. The control variables 𝑢1(𝑡) 𝑎𝑛𝑑 𝑢2(𝑡) were introduced to represent interventions aimed at reducing the 
rate of complications and increasing the rate of treatment, respectively. By including these controls, the model 
was designed to directly influence the progression and management of complications within the population. The 
modified system of equations is outlined as follows:

𝑑𝐻(𝑡)
𝑑𝑡 = βθ ― τ𝐻(𝑡) + σ𝑆(𝑡) ― μ𝐻(𝑡) (2.6)
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𝑑𝑆(𝑡)
𝑑𝑡 = β(1 ― θ) ― μ𝑆(𝑡) ― α𝑆(𝑡) ― σ𝑆(𝑡) + τ𝐻(𝑡) (2.7)

𝑑𝐷(𝑡)
𝑑𝑡 = α𝑆(𝑡) ― μ𝐷(𝑡) ― (λ ― 𝑢1(𝑡))𝐷(𝑡) + ω𝑇(𝑡) (2.8)

𝑑𝐶(𝑡)
𝑑𝑡 = (λ ― 𝑢1(𝑡))𝐷(𝑡) ― (γ + 𝑢2(𝑡))𝐶(𝑡) ― δ𝐶(𝑡) ― μ𝐶(𝑡)  (2.9)

𝑑𝑇(𝑡)
𝑑𝑡 = (γ + 𝑢2(𝑡))𝐶(𝑡) ― ω𝑇(𝑡) ― μ𝑇(𝑡)  (2.10)

where:

(𝜆 ― 𝑢1(𝑡)) reflects the reduced rate at which diabetics without complications 𝐷(𝑡) develop complications 
due to the intervention 𝑢1(𝑡),

(𝛾 + 𝑢2(𝑡)) reflects the increased rate at which diabetics with complications 𝐶(𝑡) receive treatment due to 
the intervention 𝑢2(𝑡).

2.4. Objective functional

The objective of the optimal control problem is to minimize the total number of diabetics with 
complications over a fixed time horizon [0,𝑇] while considering the costs associated with implementing control 
measures. The objective function is formulated as:

𝐽 = ∫𝑇
0 𝐴1𝐶(𝑡) + 𝐴2𝑢2

1(𝑡) + 𝐴3𝑢2
2(𝑡)  𝑑𝑡,  (2.11)

where:

𝐴1 = weight factor for 𝐶(𝑡) which represents the number of diabetics with complications.

𝐴2 = weight factor for the control effort 𝑢1(𝑡), which reduces the incidence rate of complications.

𝐴3 = weight factor for the control effort 𝑢2(𝑡), which increases the treatment rate of complications.

To ensure that the control functions are feasible in a practical scenario, we place the following constraints 
on the controls 𝑢1(𝑡) and 𝑢2(𝑡)

0 ≤ 𝑢1(𝑡) ≤ 1 and 0 ≤ 𝑢2(𝑡) ≤ 1.

These constraints imply that the control efforts are bounded and can range between no control 𝑢1(𝑡) = 0,𝑢2

(𝑡) = 0 and full control 𝑢1(𝑡) = 1,𝑢2(𝑡) = 1.

The state variables 𝐻(𝑡), 𝑆(𝑡), 𝐷(𝑡), 𝐶(𝑡), 𝑇(𝑡) have initial conditions that represent the population sizes at 
the start of the control period:

𝐻(0) = 𝐻0, 𝑆(0) = 𝑆0, 𝐷(0) = 𝐷0, 𝐶(0) = 𝐶0, 𝑇(0) = 𝑇0.  (2.12)

2.5. Hamiltonian system

The Hamiltonian function 𝐻 includes the objective function we want to minimize and the dynamics of the 
state variables. It is given by:

ℋ(𝑥,𝑢,λ,𝑡) = 𝐿(𝑥,𝑢,𝑡) + λ𝑇𝑓(𝑥,𝑢,𝑡). (2.13)
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After applying this to the model, we get:

ℋ = 𝐴1𝐶(𝑡) + 𝐴2𝑢2
1(𝑡) + 𝐴3𝑢2

2(𝑡) + λ𝐻
𝑑𝐻(𝑡)

𝑑𝑡 + λ𝑆
𝑑𝑆(𝑡)

𝑑𝑡 + λ𝐷
𝑑𝐷(𝑡)

𝑑𝑡 + λ𝐶
𝑑𝐶(𝑡)

𝑑𝑡 + λ𝑇
𝑑𝑇(𝑡)

𝑑𝑡 (2.14)

where:

 𝜆𝐻, 𝜆𝑆, 𝜆𝐷, 𝜆𝐶, and 𝜆𝑇 are the adjoint variables.

The Hamiltonian ℋ is constructed as follows, including the state dynamics, controls, and adjoint variables:

ℋ = 𝐴1𝐶(𝑡) + 𝐴2𝑢2
1(𝑡) + 𝐴3𝑢2

2(𝑡) + λ𝐻(βθ ― τ𝐻(𝑡) + σ𝑆(𝑡) ― μ𝐻(𝑡)) + λ𝑆
(β(1 ― θ) ― μ𝑆(𝑡) ― α𝑆(𝑡) ― σ𝑆(𝑡) + τ𝐻(𝑡)) + λ𝐷(α𝑆(𝑡) ― μ𝐷(𝑡) ― (λ ― 𝑢1(𝑡))𝐷(𝑡) + ω𝑇(𝑡))  +  λ𝐶
((λ ― 𝑢1(𝑡))𝐷(𝑡) ― (γ + 𝑢2(𝑡))𝐶(𝑡) ― δ𝐶(𝑡) ― μ𝐶(𝑡)) + λ𝑇((γ + 𝑢2(𝑡))𝐶(𝑡) ― ω𝑇(𝑡) ― μ𝑇(𝑡)). (2.15)

2.6. Solving the adjoint variables

The role of adjoint variables in optimal control theory is to provide necessary conditions for optimality. 
They help in deriving the optimal control laws for a given system [18]. Specifically, adjoint variables are part of 
Pontryagin’s Maximum Principle, which is a fundamental method used to find the best possible control for a 
dynamic system over a given period of time [19].

The adjoint variables 𝜆(𝑡) evolve according to:

𝑑λ(𝑡)
𝑑𝑡 = ― ∂ℋ

∂𝑥 . (2.16)

The adjoint equations are derived from the partial derivatives of the Hamiltonian with respect to the state 
variables. The adjoint variables for each state variables are: 

𝑑λ𝐻

𝑑𝑡 = ― ∂ℋ
∂𝐻  (2.17)

𝑑λ𝑆

𝑑𝑡 = ― ∂ℋ
∂𝑆 (2.18)

𝑑λ𝐷

𝑑𝑡 = ― ∂ℋ
∂𝐷 (2.19)

𝑑λ𝐶

𝑑𝑡 = ― ∂ℋ
∂𝐶 (2.20)

𝑑λ𝑇

𝑑𝑡 = ― ∂ℋ
∂𝑇 (2.21)

Solving the adjoint variables results to

𝑑λ𝐻

𝑑𝑡 = λ𝐻 ⋅ τ + λ𝐻 ⋅ μ ― λ𝑆 ⋅ 𝜏  (2.22)

𝑑λ𝑆

𝑑𝑡 = λ𝑆 ⋅ μ + λ𝑆 ⋅ α + λ𝑆 ⋅ σ ― λ𝐻 ⋅ σ ― λ𝐷 ⋅ 𝛼 (2.23)

𝑑λ𝐷

𝑑𝑡 = λ𝐷 ⋅ μ + λ𝐷 ⋅ λ ― λ𝐷 ⋅ 𝑢1 ― λ𝐶 ⋅ λ + λ𝐶 ⋅ 𝑢1  (2.24)

𝑑λ𝐶

𝑑𝑡 = λ𝐶 ⋅ γ + λ𝐶 ⋅ 𝑢2 + λ𝐶 ⋅ δ + λ𝐶 ⋅ μ ― λ𝑇 ⋅ γ ― λ𝑇 ⋅ 𝑢2 ― 𝐴1  (2.25)

𝑑λ𝑇

𝑑𝑡 = λ𝑇 ⋅ ω + λ𝑇 ⋅ μ ― λ𝐷 ⋅ 𝜔  (2.26)
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2.7. Optimality conditions

To find the optimal control laws 𝑢1(𝑡) and 𝑢2(𝑡), the derivative of the Hamiltonian is taken with respect to 
each control and set to zero.

∂𝐻
∂𝑢1(𝑡) = 0,     

∂𝐻
∂𝑢2(𝑡) = 0.  (2.27)

This will give the optimal control laws for 𝑢1(𝑡) and 𝑢2(𝑡):

𝑢1 =
(λ𝐷 ⋅ λ ⋅ 𝐷) ― (λ𝐶 ⋅ λ ⋅ 𝐷)

2 ⋅ 𝐴2
,  (2.28)

𝑢2 =
(λ𝐶 ⋅ γ ⋅ 𝐶) ⋅ (λ𝑇 ⋅ γ ⋅ 𝐶)

2 ⋅ 𝐴3
.  (2.29)

3. Results

The parameters used in the model were carefully selected from reliable sources to reflect real-world 
dynamics. Specifically, problem-specific values for rates such as the development of complications, disease 
onset, natural mortality, treatment success, and others were obtained from the International Diabetes Federation 
(IDF) database, which provides detailed information on diabetes trends and statistics globally. These values 
helped to ensure that the model reflects realistic scenarios faced by healthcare systems dealing with diabetes 
management.

Table 3.1: Description of parameters of the uncontrolled model with specific values.

S/N Variables Parameters Specific Values

1  Probability rate of incidence of diabetes 0.1

2  Birth rate 0.5

3  Natural mortality rate 0.01

4  Rate at which healthy individual become 
susceptible

0.2

5  Rate at which susceptible individual become 
healthy

0.05

6  Rate at which 𝐷(𝑡) develop a complication 0.2

7  Rate at which 𝐶(𝑡) are treated 0.3

8  Rate at which 𝐶(𝑡) after treatment return to 𝐷(𝑡) 0.4

9  Mortality rate due to complications 0.05

10  Proportion of children born into the healthy class 0.8

11 1 Proportion of children born into the susceptible 
class

0.2
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3.1. Graphical representation of results of model without control

The initial phase of the analysis involved simulating the dynamics of the diabetic population without the 
implementation of any control measures. The following graphs illustrate the population changes over a period 
of 10 years for five key subpopulations.

Figure 3.1: Graph of the healthy population without control.

Figure 3.2: Graph of the susceptible population without control.

Figure 3.3: Graph of the diabetic population without control.
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Figure 3.4: Graph of the diabetic with complication population without control.

Figure 3.5: Graph of the treatment of diabetic with complication population without control.

3.2. Graphical representation of results of model with control

In this section, the modified model incorporating optimal control strategies aimed at managing the 
incidence and treatment of medical complications in a diabetic patient population was presented. Unlike the 
initial model without control, where the dynamics of the population were allowed to progress naturally, this 
version introduces two control measures denoted as 𝑢1(𝑡) and 𝑢2(𝑡) designed to mitigate complications and 
improve treatment outcomes over a period of 10 years.

The goal of implementing controls was to optimize the population dynamics by:
i. Reducing the number of patients who develop complications due to diabetes.

ii. Increasing the rate at which patients with complications receive treatment.

Specifically, the introduction of controls aims to maintain a lower population in the complication class 
while simultaneously improving the effectiveness of treatment measures, leading to better overall health 
outcomes.
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3.3. Description of control variables

The control variables, 𝑢1(𝑡) and 𝑢2(𝑡) reflect real-life strategies that can be applied to achieve the above 
objectives:

i. 𝑢1(𝑡) - (Patient education, regular monitoring, and preventive treatment):

This control measures efforts such as awareness campaigns, preventive care, and frequent health monitoring 
to reduce the transition of individuals from the diabetic class to the complication classes. In this model, a value 
of 𝑢1(𝑡) =  0.19 indicates moderate but effective application of these preventive strategies. The primary 
influence of 𝑢1(𝑡) is on reducing the rate at which patients develop complications by controlling the parameter 
𝜆 which governs complication progression.

ii. 𝑢2(𝑡) - (Comprehensive care for complications, accessibility of healthcare, rehabilitation, and follow-
up care):

This control represents medical interventions aimed at treating complications and managing the long-term 
care of diabetic patients. A value of 𝑢2(𝑡) = 0.2 reflects the quality and accessibility of healthcare services, 
rehabilitation programs, and follow-up care. In the model, this influences the parameter γ which governs the 
recovery rate from complications, improving patient outcomes by increasing the rate of recovery from 
complications.

In the preceding sections, the results of the model without control were presented, where complications 
grew significantly, and treatment efforts struggled to keep pace. Here, the results from the model with control to 
those of the uncontrolled model were being compared. The controls are expected to yield more desirable 
population outcomes, including lower complication rates and improved recovery rates.

For this simulation, the Runge-Kutta 4th order (RK4) method to numerically solve the system of differential 
equations representing the population dynamics was implemented. The parameters for the modified model were 
chosen based on available data and adjusted to reflect the influence of the control variables.

The following graph illustrated the dynamics of the healthy, susceptible, diabetic, complication, and 
treatment populations with the applied controls. The time horizon for this simulation still remained 10 years, 
and the effects of 𝑢1(𝑡) and 𝑢2(𝑡) on the respective populations are shown, providing a direct comparison to the 
previously presented uncontrolled model.

Figure 3.6: Graph of the healthy population with control.
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Figure 3.7: Graph of the susceptible population with control.

Figure 3.8: Graph of the diabetic population with control.

Figure 3.9: Graph of the diabetic with complication population with control.
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Figure 3.10: Graph of the treatment of diabetic with complication population with control.

The observed increase in the treatment population during the early years can be attributed to the immediate 
effects of implementing control measures. Initially, enhanced patient education, regular monitoring, and 
preventive treatments (represented by 𝑢1) lead to greater awareness of complications among diabetic patients. 
This heightened awareness results in an increase in the number of individuals seeking treatment.

However, as time progresses and these control measures take effect, a noticeable decrease in the 
complication population 𝐶(𝑡) occurs. This reduction implies that fewer patients require treatment, leading to a 
decline in the treatment population 𝑇(𝑡). Therefore, the initial rise in the treatment class is countered by the 
subsequent decrease in complications, demonstrating the importance of comprehensive care for complications, 
accessibility to healthcare, rehabilitation, and follow-up care (represented by 𝑢2).

Interestingly, the healthy and susceptible populations remain relatively unchanged despite the 
implementation of control measures. This phenomenon can be attributed to the stability of the transition rates 
between these classes, as the parameters governing these transitions (such as 𝜎, 𝜏) and some other parameters 
have not been altered. As a result, the dynamics of healthy individuals transitioning to susceptible status and 
vice versa do not exhibit significant shifts, highlighting that while control measures impact treatment and 
complications, they may not directly affect the underlying population distributions of health and susceptibility.

Table 3.2: Description of parameters of the controlled model with specific values

S/N Variables Parameters Specific Values after 
Control

1  Probability rate of incidence of diabetes 0.1

2  Birth rate 0.5

3  Natural mortality rate 0.01

4  Rate at which healthy individual become 
susceptible 

0.2

5  Rate at which susceptible individual become 
healthy 

0.05
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6  Rate at which 𝐷(𝑡) develop a complication 0.01

7  Rate at which 𝐶(𝑡) are treated 0.5

8  Rate at which 𝐶(𝑡) after treatment return to 𝐷(𝑡) 0.4

9  Mortality rate due to complications 0.05

10  Proportion of children born into the healthy class 0.8

11 1 Proportion of children born into the susceptible 
class

0.2

4. Conclusion

In this study, the dynamics of diabetic populations with a focus on the impact of control measures on health 
outcomes was investigated. Through mathematical modeling, the interactions between healthy, susceptible, 
diabetic, complication, and treatment populations, revealing significant insights into the effects of control 
strategies were explored. The results indicated that implementing control measures, such as patient education, 
regular monitoring, and comprehensive care, led to an initial increase in the treatment population as patients 
became more aware of complications and sought for medical assistance. However, as those measures took 
effect, there was a consequential reduction in the complication population, resulting in fewer individuals 
requiring treatment over time. This underscored the effectiveness of preventive strategies in managing diabetic 
complications. Moreover, the analysis highlighted that while control measures significantly influenced the 
treatment and complication dynamics, the healthy and susceptible populations remained relatively stable. This 
stability suggested that transition rates between these classes are not markedly affected by the control 
interventions, emphasizing the need for ongoing public health initiatives aimed at promoting healthy lifestyle 
and preventing the onset of diabetes.
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