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Abstract

Let w, be a given sequence in arithmetic progression with common difference d. The study of
diophantine equation, which are polynomial equations seeking integer solutions has been a very
interesting journey in the field of number theory. Historically, these equations have attracted
the attention of many mathematicians due to their intrinsic challenges and their significance in
understanding the properties of integers. In this current study we examine a diophantine equation
relating the sum of square integers from specific sequences to a variable d. In particular, on extension
of existing results on the diophantine equation: Y _, w? + %d2 = 3(% + 25:1 w2,_,) is introduced

and partially characterized.

1 Introduction

Diophantine equations, tracing their roots back to the error of ancient Greek mathematician Diophantus,
continue to be a captivating challenge within number theory. These equations seeking integers solutions,
hold significant importance due to their real life applications. Despite the extensive exploration of various
diophantine equation, including renowned challenges like Fermat’s Last Theorem, Ramanugn. Nagell
equation and Lebesque Nagell, as well as studies focusing of polynomials of degree less than five, the
specific examinations of the diophantine equation Y 1, w2 + %dQ = 3(”7“12 + 25:1 Zgr_l) remains largely
uncharted. Recent research has delved into the intricacies of polynomials with degrees less than five as
referenced [1,3,5,9,13,15] for a comprehensive understanding of studies related to Fermat’s Last Theorem

and Baranujan Nagell equations readers are encouraged to explore [2,1,7,8,10-12,14,16] within the existing
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body of work the literature concerning the diophantine equation Y, w2 + Fd? = 3(”%2 +33, ngl)
remains largely unexplored. This study aims to contribute to this knowledge gap on extension of existing
results on the Diophantine Equation: Y ", w? + %dQ =3 ("sz +3075 w%r_1> which was first introduced

by Mude et al. in [12] and Najman in [I4], thus seeking to enhance our comprehension of this specific

diophantine equation within the broader landscape of mathematical exploration.

2 Main Results

Theorem 1.1: Consider the condition satisfying the equation (n,wi,ws,...,w1s,5d) =

(15, w1, wa, ..., w15, 5d).
Then, the diophantine equation:

w? + wi + wi + wi 4+ W+ wi + wi+ w4+ wi + wi + wh + wi + wl + Wi + wl + 5d =
3(5d* + w3 + wi + wi + wi, + wiy)

has the solution in integers if wis — w14 = Wiq4 — W13 = W13 — Wiz = Wig — W1l = W11 — W10 = Wig — W9 =

wg—wg:wg—w7:w7—w6:w6—w5:w5—w4:w4—w3:w3—w2:w2—w1:d.
Proof: Consider the equation

w%—l—w%—i—w%+wz+w§+w%+w$+w§+w3+w%o+w%1+w%2+w%3+w%4+w%5+5d2 =
3(5d? + w3 + w? + wi + wi + w?,).

And suppose that ws = wy + d, w3 = wy + 2d,wys = wy + 3d,ws = wy + 4d,wg = wy + dd,w; =
wy + Gd,wg = wy + 7d,w9 = wy + 8d,w10 = wp + gd, w1l = wi + 10d,w12 = w + 11d,w13 =
wy + 12d, wig = wy + 13d, w15 = wy + 14d.

Hence:

And suppose that w? + (wy + d)? + (w1 + 2d)? + (w1 + 3d)? + (w1 + 4d)? + (w1 + 5d)? + (w1 + 6d)? +
(w1 +7d)*+ (w1 +8d)% + (w1 +9d)* + (w1 +10d)? + (w1 +11d)? + (w1 +12d)? + (w1 +13d)? + (w1 +14d) >+ 5d>.
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Simplifies to

15w? 4 210w d + 1020d? = 3(5w? + 70w;d + 340d?). ...(1.1)

Splitting equation (1.1) into thrice sums of squares, we obtain:

3(5d% + (w? + 2wid + d?) + (w} + 8wid + 16d?) + (w} + 14w d + 49d?) + (w? + 20w1d + 100d?) + (w? +
26w d + 169d?))

= 3(5d?) + (w1 + d)? + (w1 + 4d)? + (w1 + 7d)? + (wy + 10d)?

= 3(5d? + w% + w?) + wg + w%l + wil).

This completes the proof. ]

Theorem 1.2: Consider the condition satisfying the equation (n,wi,ws,...,wis,6d) =

(15, w1, w2, ..., W18, Gd)

Then, the diophantine equation:

wi + w3 + w3 +wi + wi + wg + wF +wi +w§ + wiy +wi +wi, + wiz 4+ wiy +wis +wis + wi; +wi + 64

= 3(6d® + w3 + w2 + wi + wi + w?; + wi.)

has the solution in integers if wig — Wiy = Wiy — Wi = W1ig — W15 = W15 — W14 = W14 — W13 = W13 — W12 =
Wi — Wil = W1l — W1 = W10 — W9 = W9 — Wg = Wg — Wy = Wy — Wg = We — W5 = W5 — W4 = W4 — W3 =

w3—w2:w2—w1:d.

Proof: Consider the equation
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w%+w%+w§+wi+w§+w%+w$+w§+w§+w%o+w%1+w%2+w%3+w%4+w%5+w%6+w%7+w%8+6d2

= 3(6d” + w3 + wi + wi + wi + wiy + wi,).

And suppose that we = wy + d,ws = wi + 2d,ws = wy + 3d,ws = wy + 4d,wg = wy + dd,w; =
wy + 6d,wg = wy + Td,wg = wy + 8d,wig = wi; + 9d, w11 = wy + 10d, w12 = wy + 11d, w13
wy + 12d, w14 = wy + 13d, wis = w1 + 14d, wig = w1 + 15d, w17 = wy + 16d, wig = wy + 17d.

Hence:

And suppose that w? + (w1 + d)? + (w1 + 2d)? + (w1 + 3d)? + (w1 + 4d)? + (w1 + 5d)? + (w1 + 6d)? +
(w1 + 7d)? + (w1 + 8d)? + (w1 + 9d)? + (w1 + 10d)? + (w1 + 11d)? + (w1 + 12d)? + (w1 + 13d)? + (w1 +
14d)? + (w1 + 15d)? + (w1 + 16d)? + (wy + 17d)? + 6d°.

Simplifies to

18w? + 306wy d + 1791d2 = 3(6w? + 102w d + 597d2). ...(1.2)

Splitting equation (1.2) into thrice sums of squares, we obtain:

3(6d% + (w? + 2wid + d?) + (w? + S8wyd + 16d?) + (w? + 14wyd + 49d?) + (w? + 20w d + 100d?) + (w? +
26w d 4 169d? + (w? + 32wy d + 256d?))

= 3(6d?) + (w1 + d)? + (wy + 4d)? + (w1 + 7d)% + (w1 + 10d)? + (wy + 13d)? + (w1 + 16d)?

= 3(6d? + w3 + wi + wi + wi + wiy + wi,).

This completes the proof. ]

Theorem 1.3: Consider the condition satisfying the equation (n,wi,ws,...,w,7d) =

(21, w1, wy, ..., way, 7d).
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Then, the diophantine equation:

wi +wj + wi + wj + wi + w§ + w? + wi + w§ + wiy + wi +wi, +wi; +wl + wls + wi + wi; +wig +
U}%g"_wgo‘i_w%l +7d2

= 3(7d* + w3 + wi + w§ + wi} + wiy + wi; + wiy)

has the solution in integers if woy — Woy = Woy — W19 = W19 — W18 = W1ig — W17 = W17 — W1ig = Wig — W15 =
Wis — W14 = W4 — W13 = W13 — W12 = W12 — W11 = Wil — W0 = W0 — W9 = W9 — Wg = Wg — Wy =

w7—w6:w@-—wg,:w5—w4:w4—w3:w3—w2:w2—w1:d.

Proof: Consider the equation

w3 + w3 + w3 + w3 + w2 + w2 + w2 + w3 + wd + wiy + W + W+ wiy + wi, + Wi+ wi + wi + wi +
w%g + w%o + w%l + 7d2

= 3(7d? + w3 + wi + wi + wi + wiy + wi; + wiy).

And suppose that wo = wy +d, ws = w1 +2d, wy = wy+3d, ws = wy +4d, wg = w1 +5d, wy = w1 +6d, wg =
w1+7d, w9 = w1 +8d, wig = w1+9d, w11 = w1+10d, wis = wi+11d, w13 = w1 +12d, wig4 = w1+13d, w15 =
w1+ 14d, wig = w1+ 15d, w17 = w1 +16d, wig = w1 +17d, wig = wy +18d, weg = w1+ 19d, we1 = w1 +20d.

Hence:

And suppose that wi + (w1 + d)? + (w1 + 2d)* + (w1 + 3d)? + (w1 + 4d)? + (w1 + 5d)? + (w1 + 6d)? +
(w1 + 7d)? + (w1 + 8d)% + (w1 + 9d)? + (w1 + 10d)? + (w1 + 11d)? + (wy + 12d)? + (wy + 13d)? + (w1 +
14d)? + (wy + 15d)? + (w1 + 16d)? + (wy + 17d)? + (w1 + 18d)? + (wq + 19d)? + (w1 + 20d)? + 7d>.

Simplifies to

21w? + 420w d + 2877d? = 3(Tw? + 140w d + 959d2). ...(1.3)

Splitting equation (1.3) into thrice sums of squares, we obtain:
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3(7d? + (w? + 2wid + d?) + (w? + 8wid + 16d?) + (w? + 14wid + 49d?) + (w? + 20wid + 100d?) + (w? +
26wy d + 169d? + (w} + 32w d + 256d?) + (w? + 38wy d + 361d?))

= 3(7d?) + (w1 + d)? + (w1 + 4d)? + (w1 + 7d)? + (w1 + 10d)? + (wy + 13d)? + (wq + 16d)? + (wq + 19d)>

= 3(7d? + w3 + w2 + w2 + wi + wi, + wi +wdy).

This completes the proof. ]

Theorem 1.4: Consider the condition satisfying the equation (n,wi,ws,...,weq,7d) =

(24, w1, wy, ..., waq, 8d).

Then, the diophantine equation:

w} + w3 + wi + wi +w +w§ + wF +wg + w§ + wiy + wi; +why +wiy +wiy +wis +wis +wi; +wis +
wiy + wiy + wi + wiy + wis + wi, + 8d?

= 3(8d% + w3 + w2 + wi + wi + w?y + wi, + w3y + wi3)

has the solution in integers if woz — Woo = Wag — Wo1 = Wo1 — Woy = W9y — W19 = W19 — W18 = W1ig — Wiy =
w1y — Wie = Wi — W15 = Wis — W14 = W14 — W13 = W13 — Wi2 = W12 — Wil = Wil — Wi = Wig — W9 =

wg—wg:wg—w7:w7—w6:w6—w5:w5—w4:w4—w3:w3—w2:w2—w1:d.

Proof: Consider the equation

wi + w4+ wi +wi +wi + wi + wi +wi +wi 4w +wh +why +wis +wly + wis +wis +wi +wis+
Wiy + w3y + w3 + Wiy + wiy + w3, + 8d?

= 3(8d? + w3 + w3 + w§ + wi| + wiy + wi; + wi + wis).

And suppose that ws = wy + d, w3 = wy + 2d,ws = wy + 3d,ws = wy + 4d,wg = wy + dd,w; =
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wy + 6d,wg = wy + 7d,wg = w1 + 8d, w90 = w1 + 9d, w11 = wi + 10d, w12 = wy + 11d, w13 =
wy + 12d, w4 = wy + 13d, w15 = wy + 14d, w1 = w1 + 15d, w17 = wy + 16d, w1 = wi + 17d, w19 =
wy 4 18d, weg = wy + 19d, we1 = wy + 20d, wey = wy + 21dwes = wy + 22dweg = wy + 23d.

Hence:

And suppose that w? + (wy +d)?+ (w1 +2d)? + (w1 +3d)? + (w1 +4d)? + (w1 +5d)% + (w1 +6d)* + (w1 +7d) > +
(w1 48d)*+ (w1 +9d)? + (w1 +10d)?+ (w1 +11d)? 4 (w1 +12d) >+ (w1 +13d) 2+ (w1 +14d)* + (w1 +15d) 2+ (w1 +
16d)? + (w1 +17d)% + (wq +18d)? + (w1 +19d)? + (w1 +20d)? + (w1 +21d)? + (w1 +22d)? + (w1 +23d)? + 8d>.

Simplifies to
24w? + 552wy d + 4332d* = 3(8w] + 184wy d + 1444d?). ...(1.4)
Splitting equation (1.3) into thrice sums of squares, we obtain:

3(8d* + (w? + 2wid + d?) + (w} + 8wid + 16d?) + (w} + 14w d + 49d?) + (w? + 20w1d + 100d?) + (w? +
26w d + 169d? + (w3} + 32w d + 256d?) + (w? + 38wid + 361d?) + (wi + 44w d + 484d?))

= 3(8d?)+ (w1 +d)?+ (w1 +4d)?+ (w1 +7d)*+ (w1 +10d) 2+ (w1 +13d) 2+ (w1 +16d) >+ (w1 +19d) %+ (w1 +22d)?
= 3(7d?* + w3 + wi + wi + wi, +wi, + wi; + w3 + wiy).

This completes the proof. O

3 Conclusion

. . . : no 2 ng2 _ qnd? 5,2
In summary, the solution of the diophantine equation )" w; + §d* = 3("§- + >_5_; w3, ), under
the specified conditions of a common difference d between consecutive terms wy,, w,_1, ..., ws, w1 where
Wy — Wp—1 = Wp—1 — Wp—2 = ... = wy — w1 = d has been achieved for some cases. This solution

provides valuable insights into the relation among the sequence terms, enhancing our understanding of
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the inherent patterns and structures within the equation. For future investigations, it is recommended to

explore extensions of this diophantine equation by proving conjecture (1).
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