
Earthline Journal of Mathematical Sciences 

ISSN (Online): 2581-8147   

Volume 2, Number 1, 2019, Pages 101-109 

https://doi.org/10.34198/ejms.2119.101109   
 

Received: April 16, 2019; Revised: April 23, 2019; Accepted: April 24, 2019  

2010 Mathematics Subject Classification: 34-XX. 

Keywords and phrases: variational iteration method, vibration, Lagrange multiplier.  

Copyright © 2019 Muhammad Munib Khan. This is an open access article distributed under the Creative 

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

Variational Iteration Method for the Solution of Differential Equation 

of Motion of the Mathematical Pendulum and Duffing-Harmonic 

Oscillator 

Muhammad Munib Khan
 

Department of Basic Sciences, University of Engineering and Technology Peshawar, Pakistan  

Abstract 

In this work, the differential equation of motion of the undamped mathematical pendulum 

and Duffing-harmonic oscillator are discussed by using the variational iteration method. 

Additionally, common problems of pendulum are classified and Lagrange multipliers are 

obtained for each type of problem. Examples are given for illustration. 

1. Introduction  

Vibration of dynamical systems can be divided into two main classes like discrete 

and distributed. The variables in discrete systems depend on time only, whereas in 

distributed systems such as beams, plates, etc. variables depend on time and space. 

Therefore, equations of motion of discrete systems are described by ordinary differential 

equations, while equations of motion of distributed systems are described by partial 

differential equations [1]. 

The variational iteration method [2-13] has been used to solve many nonlinear PDEs, 

ordinary differential equations such that wave solutions, rational solutions, compacton 

solutions and other types of solution were found by Abdou and Soliman [14].  

Additionally, He [15] used VIM to solve linear/nonlinear vibration problems.  
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The procedure presented in this paper can be simply extended to solve more complex 

vibration problems; such as aeroelasticity, random vibrations etc.  

2. Variational Iteration Method 

In order to illustrate the basic concepts of VIM, the following nonlinear partial 

differential equation can be considered 

 ( ) ( ) ( ),,,, txgtxNutxRu =+  (1) 

where R is a linear operator which has partial derivatives with respect to ( )txNu ,  is a 

nonlinear term and ( )txg ,  is an inhomogeneous term.  

According to VIM, the following iteration formula can be constructed. 

 ( ) ( ) [ ]∫ τ−+λ+=+

t

nnnn dguNuRtxutxu

0

1 ,~~,,  (2) 

where λ  is the general Lagrange multiplier which can be identified optimally via 

variational theory, nuR~   and nuN~   are considered as restricted variations, i.e.,  

.0~,0~ =δ=δ nn uNuR  

3. Examples 

Example 1. 

In this example, Mathematical Pendulum that was studied by He [15, 16] is 

considered.  

The differential equation of motion of the undamped mathematical pendulum is 

given by 

 .0sin2 =ω+ yyɺɺ  (3) 

The initial conditions for this problem are as follows: 

 ( ) ,0 Ay =  (4a) 

 ( ) .00 =yɺ   (4b) 
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The sin y term in Eq. (3) is a nonlinear term and it can be expanded as  

   .
6

1
sin

3
yyy −≈  (5) 

Substituting Eq. (4) into Eq. (5) gives 

 .0
6

3
2

2 =ω−ω+ yyyɺɺ   (6) 

A more detailed form of this mathematical pendulum was investigated by He [15, 

16].  

The Lagrange multiplier of this problem is 

 ( )[ ].sin
1

t−τω
ω

=λ   (7) 

Hence the iteration formula is 

 ( ) ( ) [ ( )] ( ) ( ) ( )∫ τ











τω−τω+τ′′−τω

ω
+=+

t

nn dyyyttyty

0

3
2

2
1 .

6
sin

1
  (8) 

The complementary solution of this problem that is used as an initial approximation is 

given by 

 ( ) ( ),cos0 tAty αω=  (9) 

where α  is an unknown constant.  

Substituting the initial approximation into Eq. (5), the following residual is obtained 

( ) 3
2

2
0

6
yyytR

ω−ω+≈ ɺɺ  

 ( ) ( ).3cos
24

1
cos

8

1
1 23222

tAtAA αωω−αωω






 α−−=   (10) 

The coefficient of the ( )tαωcos  term is set to zero in order to eliminate the secular term 

which may occur in the next iteration. Doing so, the expression of α  is found as follows 
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 .
8

1
2

A−=α  (11) 

Hence, 

 ( )
( )

( )tt
A

tAty ω−αω
ω−α

−αω= cos3cos
1924

cos
22

3

1   (12) 

with α  defined in Eq. (11). 

The period can be expressed as follows 

 .

8

1
1

2

2
A

T

−ω

π=   (13) 

If  ,
2

π=A  then  .20.1 0TT =  On the other hand He’s [15, 16] approximation gives  

,17.1 0TT =  while the exact period is ,16.1 0TTex =  where .20 ωπ=T  

Example 2.  

In this example, the problem that was studied by Nayfeh and Mook [17] is 

considered.  

The differential equation of motion is given by, 

  .0
22 =ε+ω+ uuuu ɺɺɺɺ   (14) 

The initial conditions for this problem are as follows: 

 ( ) ,0 Ay =   (15a) 

 ( ) .00 =yɺ   (15b) 

The Lagrange multiplier of this problem is 

 ( )[ ].sin
1

t−τω
ω

=λ   (16) 

The iteration formula is given by  

 ( ) ( ) [ ( )][ ( ) ( ) ( ) ( )]∫ ττ′′τε+τω+τ′′−τω
ω

+=+

t

nn duuuuttutu

0

22
1 .sin

1
  (17) 
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The complementary solution of this problem that is used as an initial approximation is 

given by 

 ( ) ( ),cos0 tAtu αω=   (18) 

where α  is an unknown constant.  

Substituting the initial approximation given by Eq. (18), the following residual is 

obtained as follows 

( ) uuuutR ɺɺɺɺ
22

0 ε+ω+≈  

 ( ) ( ).3cos
4

1
cos

4

3
1 223222

tAtAA αωωαε−αω






 ε−α−ω=   (19) 

The coefficient of the ( )tαωcos  term is set to zero in order to eliminate the secular term 

which may occur in the next iteration. Doing so, the expression for α  is obtained as 

follows 

 .

34

2

2
Aε+

=α   (20) 

Hence, 

 ( )
( )

( )tt
A

tAty αω−ω
−α

αε+αω= 3coscos
194

cos
2

23

1   (21) 

with α  defined in Eq. (20). 

The new frequency is defined as follows 

 .

34

2

2
11 ω

ε+
=ω⇒αω=ω

A

  (22) 

The frequency that is obtained by Nayfeh and Mook [17] using the perturbation method 

is  

 .
8

3
1 2

1 






 ε−ω=ω A   (23) 

Note that Eq. (23) is valid only for small ε  values. However, the frequency expression 

given by Eq. (22) is valid for all ε  values and takes the following form for small ε  
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values 

 .
128

27

8

3
1 422

1 ⋯+ε+ε−≈ω AA   (24) 

Example 3. 

In this example, the Duffing-harmonic oscillator that was studied by Mickens [18] 

and Lim and Wu [19] is considered.  

The differential equation of motion is given by, 

 .0
1 2

3

2

2

=
+

+
y

y

dt

yd
  (25) 

The initial conditions for this problem are as follows:  

 ( ) ,0 Ay =   (26a) 

 ( ) .00 =yɺ   (26b) 

For small y values, Eq. (25) reduces to  

 .0~3

2

2

−+ y
dt

yd
  (27a) 

On the other hand, for large y values, Eq. (25) reduces to 

 .0~
2

2

−+ y
dt

yd
  (27b) 

Considering Eqs. (26a) and (26b) respectively, it is noticed that for small y values, Eq. 

(27) reduces to the equation of motion of the Duffing-type nonlinear oscillator while for 

large y values, it reduces to the equation of motion of a linear harmonic oscillator. 

Therefore, Eq. (27) is called as Duffing-harmonic oscillator equation of motion. 

The following form of Eq. (27) is going to be studied in this example 

 ( ) .01
3

2

2
2 =++ y

dt

yd
y  (28) 

He’s technique is going to be used to overcome seculer terms that appear in the 
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iterations. The initial approximation is, 

 ( ) ( )tAty α= cos0  (29) 

where α  is an unknown constant.  

Substituting the initial approximation into Eq. (28), the following residual is 

obtained 

( ) ( ) 32
0 1 yyytR ++≈ ɺɺ  

 ( ) ( ) ( ).3cos1
4

cos
4

3

4

3 2
3

2222
t

A
tAA αα−+α







 α−α−=   (30) 

In order to discard the seculer terms, the coefficient of ( )tαcos  is set to zero which 

gives the expression of α  as follows 

 .

4

3
1

4

3

2

2

A

A

+
=α  (31) 

Hence the new frequency is defined as follows 

 
2

2

4

3
1

4

3

A

A

+
=ω  (32) 

which is the same with the one found by Mickens [18]. 

The iteration formula is given by  

 ( ) ( ) ( ) ( ) ( )∫ τ











ατα−−τ+=

t

d
A

tutu

0

2
3

01 .3cos1
4

1   (33) 

Hence, 

 ( ) ( )13cos
27

cos1 −ω+ω= t
A

tty   (34) 

with ω  defined in Eq. (30). 
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For small values of amplitude A, the frequency expression given in Eq. (32) is 

expressed as follows  

 .
4

3~ A−ω   (35a) 

Additionally, for large values of amplitude A, the frequency expression given in Eq. 

(32) is expressed as follows  

 1~−ω   (35b) 

which agree with the approximations made for the equations of motion. 

4. Conclusion 

In this work, the differential equation of motion of the undamped mathematical 

pendulum and Duffing-harmonic oscillator are solved using the variational iteration 

method. Additionally, the procedure presented in this paper can be simply extended to 

solve more complex vibration problems; such as aeroelasticity, random vibrations etc.  
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