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Abstract

In this paper, we study a type of biological population model in its fractional order using the q-Laplace

homotopy analysis method. This method, which combines the Laplace transform, q-calculus, and

the homotopy analysis method developed by Shijun Liao in [11], is employed to provide approximate

analytical solutions to the biological population model. Furthermore, we illustrate the dynamical

behavior of this model graphically.

1 Introduction

Dynamical systems are mostly modeled using partial differential equations (PDEs), and many research

work have focused on nonlinear PDEs in their integer and non-integer forms in recent years. The main

reason for the use of non-integer differential equations for modeling is due to their widespread applications

in different areas of science and engineering especially electrochemistry, acoustics, electromagnetic,

viscoelasticity chemical processes, physics, material science, engineering, and biology [1, 2]. Fractional

derivatives in differential equations allows for the consideration of a function’s past behavior across a

range of values instead of only its present state [1, 2].

Solving non-integer order differential equations can be a daunting task and this is why the past few

years have also seen the advent of different methods for their solutions. [16–18], especially [18], contains

list of methods that have been deployed over the years for non-integer differential equation and they

include: Adomian Decomposition method, homotopy analysis method, homotopy perturbation method,

and so on.

In this article, we will provide approximate analytical solutions of the biological population model

with fractional order using q-Laplace-homotopy analysis (qLHAM) approach, where Laplace-Homotopy
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analysis method is a combination of Laplace transform and the homotopy analysis method. The concept

of q-deformation plays a significant role in the study of dynamical systems, particularly in how symmetry

can be disrupted. In these systems, the fundamental symmetry present in their equilibrium state may

not hold, leading to intriguing behaviors and characteristics.

The q-deformed equations, characterized by the deformation parameter q, modify traditional algebraic

structures, introducing a rich framework for analysis. These equations find applications in various

physical contexts, enabling the description of particle behavior, field dynamics, and interactions where

noncommutative geometry or quantum group symmetries are relevant. By manipulating the value of q,

researchers can explore different regimes of a system, revealing insights into phenomena that may not be

observable within the conventional frameworks. This approach has opened new avenues for understanding

complex systems in areas such as quantum physics, statistical mechanics, and beyond.

2 Biological Population Models

The term population refers to people living within a political or geographical boundary, but in the

biological sense, it is a collection of organisms of a particular species that share the same characteristics

living in a given area. With this definition we can derive a simple population model considering birth and

death within the area as:

r = (b− d) + (i−m), (2.1)

where b is birthrate; d, death rate; m, movement out of area (i.e., emmigration) and i is the net

immigration. Assuming the population grows without limits at its maximal rate, the mathematical

model is defined by:
dN

dt
= riN, (2.2)

where N is the total number of individuals in the population, dN
dt is the rate of change of N over time t,

and ri is the innate capacity for growth. Solving (2.2) using separation of variables, we have

N = N0e
rit, (2.3)

where N0 is the initial population, and erit is the exponential function defined by:

erit =
∞∑
m=0

(rit)
m

m!
= 1 + (rit) +

(rit)
2

2!
+

(rit)
3

3!
+ . . . (2.4)

It is not the scope of this work to work on which model best suit a population, our aim is to point out

some parameters that are available in most population model and apply them to this work. Interested

readers may find a lot of introductory text that touches more on this and extends to more realistic models

like the Logistic model, Lotka-Volterra model, species-area relationship, and so on.

http://www.earthlinepublishers.com
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If we let γ and η(γ) be functions of time t and position x, y in a region R of a biological specie in R

with γ and η representing population density and population supply due to births and deaths respectively

in the nonlinear biological population model [4]:

∂αγ

∂tα
=

∂2

∂x2
(γ2) +

∂2

∂y2
(γ2) + η(γ), 0 < α ≤ 1, x, y ∈ R, t ≥ 0 (2.5)

with initial condition γ(x, y, 0). When α → 1 in (2.5), the following are mathematical explanations of

some biological processes for η(γ):

1. η(γ) = c leads to the Malthusian Law [19], where c is an arbitrary constant.

2. η(γ) = γ(c1 − c2γ) leads to Verhulst Law [19], where c1, c2 > 0.

3. η(γ) = −cγp, where c ≥ 0 and 0 < p < 1 leads to Porous Media.

Note that the fractional derivative δα

δtα = Dα
t is described in the Caputo sense, which is defined in [1,2,20]

as:

Dα
t f(t) =

 1
Γ(m−α)

∫ t
0 (t− τ)m−α−1f (m)(τ)dτ, if m− 1 < α ≤ m,

f (m)(t), if α = m ∈ N,
(2.6)

where f (m)(t) denote ∂mf(t)
∂tm and Γ is the Gamma function defined as

Γ(m) =

∫ ∞
0

e−ttm−1dt, (2.7)

which generalizes the factorial in the form:

Γ(m+ 1) = m! (2.8)

The Caputo derivative has the following properties [1, 2, 20]:

1.

Dα
t c = 0, c is a constant,

2.

Dα
t t
m =

0, m ≤ α < 1,

Γ(m+1)
Γ(m−α+1) t

m−α, m > α− 1.

3.

Lt{Dα
t f(t)} = sαf(s)−

m−1∑
k=0

sα−1−kf (k)(0+), m− 1 < α ≤ m, m ∈ N. (2.9)
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The Laplace transform of Caputo fractional derivative requires the knowledge of the initial values of the

function and its integer derivatives of order k = 1, 2, . . . ,m − 1 [2], and when α ∈ (0, 1] i.e. 0 < α ≤ 1,

(2.9) it is given by

Lt{Dα
t f(t)} = sαf(s)− f(0+)sα−1. (2.10)

3 The q-Laplace Homotopy Analysis Method

Given the fractional differential equation

Dα
t γ(x, t) + B(γ(x, t)) +N (γ(x, t)) = η(x, t), t ≥ 0, n− 1 < α ≤ n, (3.1)

with the initial condition:

γ(x, 0) = a, (3.2)

where Dα
t is Caputo’s derivative, B is a linear differential operator, N is a nonlinear differential operator,

f is the source term and γ is the unknown function. By applying the Laplace transform in the variable

t, denoted Lt, to both sides of Eq.(3.1) we get

Lt[γ(x, t)]− 1

sα

i=0∑
k−1

sα−i−1γ(i)(x, 0) +
1

sα
Lt[B(γ(x, t)) +N (γ(x, t))− η(x, t)] = 0. (3.3)

Using the initial condition (3.2), then we get

Lt[γ(x, t)]− a

s
+

1

sα
Lt[B(γ(x, t)) +N (γ(x, t))− η(x, t)] = 0. (3.4)

In view of Liao’s Homotopy Analysis Method [11, 12], for 0 ≤ q ≤ 1
n , n ≥ 1, the zero-order deformation

equation of the Laplace equation (3.4) has the form

(1− nq)Lt(γ̃(x, t; q)− γ0(x, t)) = ~qH(x, t)J [γ(x, t; q)], (3.5)

where

J [γ(x, t; q)] = Lt[γ(x, t)]− a

s
+

1

sα
Lt[B(γ(x, t)) +N (γ(x, t))− η(x, t)], (3.6)

where q ∈ [0, 1
n ] is the embedding parameter, H 6= 0 is the nonzero auxiliary function, ~ 6= 0 is an auxiliary

parameter. Thus, from eq.(3.5), when q = 0 and q = 1
n , we have

γ̃(x, t; 0) = γ0(x, t) and γ̃

(
x, t;

1

n

)
= γ(x, t) (3.7)

respectively which explains the increment of q from 0 to 1
n . That is, as q increases from 0 to 1

n , the

solution varies from the initial guess γ0(x, t) to the solution γ(x, t). Expanding γ(x, t; q) with respect to
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q with the aid of Taylor’s series expansion [13], we have

γ̃(x, t; q) = γ0(x, t) +
∞∑
j=1

γj(x, t)q
j , (3.8)

where

γj(x, t) =
1

j!

∂j γ̃(x, t; q)

∂qj

∣∣∣∣
q=0

. (3.9)

If γ0(x, t), ~ and H are properly chosen, then (3.8) converges at q = 1
n and we have

γ̃(x, t) = γ0(x, t) +
∞∑
m=1

γj(x, t)

(
1

n

)j
. (3.10)

Define the vector

~̃γ(x, t) = {γr(x, t)}jr=0. (3.11)

By differentiating equation (3.5) m times with respect to q by using the Leibniz rule [18],

m∑
n=0

(
m

n

)
Dn(1− nq)Dm−n(γ̃(x, s; q)− γ0(x, s)) =

~H(x, t)
m∑
n=0

(
m

n

)
DnqDm−n

[
γ(x, s)− a

s
+

1

sα
Lt{B(γ(x, t))−N (γ(x, t))− η(x, t)}

]
(3.12)

setting q = 0, ~ = −1, we have

Dm[γ̃(x, s; q)− γ0(x, s)]−mDm−1[γ̃(x, s; q)− γ0(x, s)] =

−H(x, t)mDm−1

[
γ(x, s)− a

s
+

1

sα
Lt{B(γ(x, t))−N (γ(x, t))− η(x, t)}

]
(3.13)

and finally multiplying through by 1
m! , we have the mth-order deformation equation given by

γ(x, s)−χ∗mγm−1(x, s) = −H(x, t)

[
γm−1(x, s)−

(
1−χ

∗
m

n

)(
a

s
+

1

sα
Ltη(x, t)

)
+

1

sα
Lt{B(γ(x, t))−Hm−1}

]
(3.14)

which can still be written as

Lt[γm(x, t)− χ∗mγm−1(x, t)] = −HRm(~γm−1(x, t)), (3.15)

where

Rm(~γm−1(x, t)) = Lt[γm−1(x, t)]−
(
a

s
+

1

sα
Lt[η(x, t)]

)(
1− χ∗m

n

)
+

1

sα
Lt[B(γ(x, t)) +Hm−1] (3.16)
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with H denoting the homotopy polynomial defined as

Hm =
1

m!

∂mγ̃(x, t; q)

∂qm

∣∣∣∣
q=0

, γ̃(x, t; q) = γ̃0 + qγ1 + q2γ̃2 + . . . (3.17)

and

χ∗m =

0, if m ≤ 1

n, if m > 1.

Taking the inverse Laplace transform, that is L−1
t , of (3.15) we have

γm(x, t) = χ∗mγm−1(x, t)− L−1
t [H(x, t)Rm(~γm−1(x, t))]. (3.18)

We have outlined the step-by-step procedure for qLHAM above and it is obeservable that when n = 1

from equations (3.5) to (3.18) the procedure reduces to the method described in [17, 18]. Suppose there

exists a constant κ, 0 < κ < 1 such that

||γm+1(x, t)|| ≤ κ||γm(x, t)|| (3.19)

for each value of m. If we truncate the series solution in eq. (3.18), the truncated series

i∑
m=0

γm(x, t)

(
1

n

)m
is an approximate solution of γ(x, t) and the maximum absolute error can be derived by using∣∣∣∣∣

∣∣∣∣∣γ(x, t)−
i∑

m=0

γm(x, t)

(
1

n

)m∣∣∣∣∣
∣∣∣∣∣ ≤ κi+1

ni(n− κ)
||γ0(x, y, t)||. (3.20)

For detailed proof of the convergence analysis and error analysis, interested reader can refer to [14–16]

and some of their cited references.

4 Implementation

In this section, qLHAM is applied to determine the exact solution of some special cases of (2.5).

Example 4.1. [3–10,15] Consider the following generalised Caputo time-fractional biological population

model

Dα
t γ(x, y, t)− γ2

xx(x, y, t)− γ2
yy(x, y, t) = ηγ(x, y, t), 0 < α ≤ 1, t > 0, (4.1)

with the initial condition

γ(x, y, 0) =
√
xy. (4.2)
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Applying Laplace transform to both sides of (4.1) using (4.2), we have:

γ(x, y, s)−
√
xy

s
− 1

sα
Lt[γ2

xx(x, y, t) + γ2
yy(x, y, t) + ηγ(x, y, t)] = 0, (4.3)

differentiating (4.3) m-times with respect to q

m∑
n=0

(
m

n

)
Dn(1− nq)Dm−n(γ̃(x, y, s; q)− γ0(x, y, s)) =

~H(x, y, t)
m∑
n=0

(
m

n

)
DnqDm−n

[
γ̃(x, y, s; q)−

√
xy

s
− 1

sα
Lt{γ2

xx(x, y, t) + γ2
yy(x, y, t) + ηγ(x, y, t)}

]
(4.4)

setting q = 0, ~ = −1 and H(x, y, t) = 1,

Dm[γ̃(x, y, s; q)− γ0(x, y, s)]−mDm−1[γ̃(x, y, s; q)− γ0(x, y, s)] =

−mDm−1

[
γ̃(x, y, s; q)−

√
xy

s
− 1

sα
Lt{γ2

xx(x, y, t) + γ2
yy(x, y, t) + ηγ(x, y, t)}

]
(4.5)

multiply through by 1
m!

1

m!
Dm γ̃(x, y, s; q)|q=0 −

1

(m− 1)!
Dm−1 γ̃(x, y, s; q)|q=0 =

−

[
1

(m− 1)!
γ̃(x, y, s; q)− 1

(m− 1)!
Dm−1

(√
xy

s
+

η

sα
Lt(γ(x, y, t))

)

− 1

sα
Lt
(m−1∑
i=0

(γiγm−1−i)xx(x, y, t) +
m−1∑
i=0

(γiγm−1−i)yy(x, y, t)

)]
(4.6)

which implies

γm(x, y, s)− χ∗mγm−1(x, y, s) =

−

[
γm−1(x, y, s)−

(√
xy

s
+

η

sα
Lt(γm−1(x, y, t))

)(
1− χ∗m

n

)

− 1

sα
Lt
(m−1∑
i=0

(γiγm−1−i)xx(x, y, t) +

m−1∑
i=0

(γiγm−1−i)yy(x, y, t)

)]
(4.7)

therefore,

γm(x, y, s) =

χ∗mγm−1(x, y, s)−

[
γm−1(x, y, s)−

(√
xy

s
+

η

sα
Lt(γm−1(x, y, t))

)(
1− χ∗m

n

)

− 1

sα
Lt
(m−1∑
i=0

(γiγm−1−i)xx(x, y, t) +
m−1∑
i=0

(γiγm−1−i)yy(x, y, t)

)]
. (4.8)
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Inverse Laplace transform of (4.8) is the equation:

γm(x, y, t) =

χ∗mγm−1(x, y, t)− L−1
t

[
γm−1(x, y, s)−

(√
xy

s
+

η

sα
Lt(γm−1(x, y, t))

)(
1− χ∗m

n

)

− 1

sα
L−1
t

(m−1∑
i=0

(γiγm−1−i)xx(x, y, t) +
m−1∑
i=0

(γiγm−1−i)yy(x, y, t)

)]
(4.9)

where

χ∗m =

0, if m ≤ 1

n, if m > 1
. (4.10)

Using eq. (4.9) and condition (4.10), we have the following iterations:

γ0(x, y, t) =
√
xy = γ0,

γ1(x, y, t) =
ηtα
√
xy

Γ(α+ 1)
= γ0

ηtα

Γ(α+ 1)
,

γ2(x, y, t) =
η2t2α

√
xy

Γ(2α+ 1)
= γ0

η2t2α

Γ(2α+ 1)
,

γ3(x, y, t) =
η3t3α

√
xy

Γ(3α+ 1)
= γ0

η3t3α

Γ(3α+ 1)
,

...

which implies that,

γ(x, y, t) =

∞∑
m=0

γm(x, y, t) =
√
xy +

ηtα
√
xy

Γ(α+ 1)
+
η2t2α

√
xy

Γ(2α+ 1)
+
η3t3α

√
xy

Γ(3α+ 1)
+ . . .

=
√
xy

(
1 +

ηtα

Γ(α+ 1)
+

η2t2α

Γ(2α+ 1)
+

η3t3α

Γ(3α+ 1)
+ . . .

)
=
√
xyEα,1(ηtα).

(4.11)

If we set α = 1 in eq. (4.11), we have:

γ(x, y, t) =
√
xy

(
1 +

ηt

Γ2
+
η2t2

Γ3
+
η3t3

Γ4
+ . . .

)
. (4.12)

Using (2.8) and (2.4), (4.12) reduces to

γ(x, y, t) =
√
xy

(
1 + ηt+

η2t2

2!
+
η3t3

3!
+ . . .

)
≡ √xyeηt. (4.13)
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Example 4.2. [4, 6] Consider the following generalised Caputo time-fractional biological population

model

Dα
t γ(x, y, t)− γ2

xx(x, y, t)− γ2
yy(x, y, t) = ηγ−1(1− aγ), 0 < α ≤ 1, t > 0, (4.14)

subject to the initial condition

γ(x, y, t) =

√
ηa

4
x2 +

ηa

4
y2 + y + 5. (4.15)

Laplace transform of both sides of (4.14) using (4.15) as expressed in (2.10) is given by:

γ(x, y, s)− 1

s

√
ηa

4
x2 +

ηa

4
y2 + y + 5− 1

sα
Lt

[
γ2
xx(x, y, t) + γ2

xx(x, y, t) + ηγ−1(1− aγ)

]
= 0. (4.16)

The nonlinear operator is thus

N [γ̃(x, y, t; q)] = γ̃(x, y, s; q)− 1

s

√
ηa

4
x2 +

ηa

4
y2 + y + 5

− 1

sα
Lt

[
γ̃2
xx(x, y, t) + γ̃2

xx(x, y, t) + ηγ̃−1(1− aγ̃)(x, y, t; q)

]
. (4.17)

For the m-th order deformation equation, we differentiate (4.17) m times wrt q. In the process, we set

q = 0, ~ = −1 and H(x, y, t) = 1. Finally multiplying by 1
m! , we obtain:

γm(x, y, s)− χ∗mγm−1(x, y, s) =

−

[
γm−1(x, y, s)−

(
1

s

√
ηa

4
x2 +

ηa

4
y2 + y + 5 +

η

sα
Lt(γ−1

m−1(1− aγm−1)(x, y, t))

)(
1− χ∗m

n

)

− 1

sα
Lt
(m−1∑
i=0

(γiγm−1−i)xx(x, y, t) +
m−1∑
i=0

(γiγm−1−i)yy(x, y, t)

)]
. (4.18)

Inverse Laplace transform of (4.18) gives the equation

γm(x, y, t)− χ∗mγm−1(x, y, t) =

−

[
γm−1(x, y, t)− L−1

t

{(
1

s

√
ηa

4
x2 +

ηa

4
y2 + y + 5 +

η

sα
Lt(γ−1

m−1(1− aγm−1)(x, y, t))

)(
1− χ∗m

n

)}

− L−1
t

{
1

sα
Lt
(m−1∑
i=0

(γiγm−1−i)xx(x, y, t) +
m−1∑
i=0

(γiγm−1−i)yy(x, y, t)

)}]
(4.19)

χ∗m =

0, if m ≤ 1

n, if m > 1.
. (4.20)
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Using (4.19) and (4.20) we get the following iterations for m = 0, 1, 2, 3, . . .

γ0(x, y, t) =

√
ηa

4
x2 +

ηa

4
y2 + y + 5 = γ0,

γ1(x, y, t) =
ηtα

Γ(α+ 1)γ0
,

γ2(x, y, t) =
−2η2t2α

Γ(2α+ 1)γ3
0

,

γ3(x, y, t) =
3η3t3α

Γ(3α+ 1)γ5
0

,

...

which implies that

γ(x, y, t) =
∞∑
m=0

γm(x, y, t) = γ0+
ηtα

γ0

[
1

Γ(α+ 1)
+

2

Γ(2α+ 1)

(
−ηtα

γ2
0

)
+

3

Γ(3α+ 1)

(
η2t2α

γ4
0

)
+. . .

]
(4.21)

and can be rewritten as

γ(x, y, t) = γ0 +
ηtα

γ0

∞∑
m=1

m

Γ(mα+ 1)

(
−ηtα

γ2
0

)m−1

. (4.22)

When α = 1, (4.22) becomes

γ(x, y, t) = γ0 +
ηt

γ0

[
1

Γ2
+
−ηt
γ2

0

2

Γ3
+
η2t2

η4
0

3

Γ4
+ . . .

]
,

= γ0 +
ηt

γ0

[
1 +
−ηt
γ2

0

+
η2t2

η4
0

1

2!
+ . . .

]
,

= γ0 +
ηt

γ0
E1,1

(
−ηt
γ2

0

)
= γ0 +

ηt

γ0
exp

(
−ηt
γ2

0

)
.

(4.23)

Example 4.3. [3–10] Consider the following generalised Caputo time-fractional biological population

model

Dα
t γ(x, y, t)− γ2

xx(x, y, t)− γ2
yy(x, y, t) = γ(x, y, t), 0 < α ≤ 1, t > 0, (4.24)

subject to the initial condition

γ(x, y, 0) =
√

sinx sinh y. (4.25)

The Laplace transform of both sides of (4.24) and (4.25) as defined in (2.10) is the equation

γ(x, y, s)− 1

s

√
sinx sinh y − 1

sα
Lt

[
γ2
xx(x, y, t) + γ2

xx(x, y, t) + γ(x, y, t)

]
= 0 (4.26)
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with the m-th order deformation equation

γm(x, y, s)− χ∗mγm−1(x, y, s) =

−

[
γm−1(x, y, s)−

(
1

s

√
sinx sinh y +

1

sα
Lt(γm−1(x, y, t))

)(
1− χ∗m

n

)

− 1

sα
Lt
(m−1∑
i=0

(γiγm−1−i)xx(x, y, t) +
m−1∑
i=0

(γiγm−1−i)yy(x, y, t)

)]
(4.27)

where already we have set q = 0, ~ = −1 and H(x, y, t) = 1. Inverse Laplace transformof (4.27) is the

equation:

γm(x, y, t)− χ∗mγm−1(x, y, t) =

−

[
γm−1(x, y, t)− L−1

t

{(
1

s

√
sinx sinh y +

1

sα
Lt(γm−1(x, y, t))

)(
1− χ∗m

n

)}

− L−1
t

{
1

sα
Lt
(m−1∑
i=0

(γiγm−1−i)xx(x, y, t) +
m−1∑
i=0

(γiγm−1−i)yy(x, y, t)

)}]
(4.28)

χ∗m =

0, if m ≤ 1

n, if m > 1.
. (4.29)

Using (4.28) and (4.29) for the first few terms of our solution, we obtain:

γ0(x, y, t) =
√

sinx sinh y = γ0,

γ1(x, y, t) =
√

sinx sinh y
tα

Γ(α+ 1)
= γ0

tα

Γ(α+ 1)
,

γ2(x, y, t) =
√

sinx sinh y
t2α

Γ(2α+ 1)
= γ0

t2α

Γ(2α+ 1)
,

γ3(x, y, t) =
√

sinx sinh y
t3α

Γ(3α+ 1)
= γ0

t3α

Γ(3α+ 1)
,

...

γ(x, y, t) =

∞∑
m=0

γm(x, y, t) = γ0

[
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ . . .

]
which can also be written as

γ(x, y, t) = γ0

∞∑
m=0

tmα

Γ(mα+ 1)
. (4.30)

If, for a test case, we set α = 1 in (4.30), we obtain:

γ(x, y, t) = γ0

∞∑
m=0

tm

Γ(m+ 1)
. (4.31)
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Example 4.4. [3,4,6–10] Consider the following generalised Caputo time-fractional biological population

model

Dα
t γ(x, y, t)− γ2

xx(x, y, t)− γ2
yy(x, y, t) = γ(1− aγ), 0 < α ≤ 1, t > 0, (4.32)

subject to the initial condition

γ(x, y, 0) = exp

[
1

2

√
a

2
(x+ y)

]
. (4.33)

Applying Laplace transform to both sides of (4.32) using (4.33), we have

γ(x, y, s)− 1

s
exp

[
1

2

√
a

2
(x+ y)

]
− 1

sα
Lt

[
γ2
xx(x, y, t) + γ2

xx(x, y, t) + γ(1− aγ)(x, y, t)

]
= 0 (4.34)

with m-th order deformation equation

γm(x, y, s)− χ∗mγm−1(x, y, s) =

−

[
γm−1(x, y, s)−

(
1

s
exp

[
1

2

√
a

2
(x+ y)

]
+

1

sα
Lt(γm−1(1− aγm−1)(x, y, t))

)(
1− χ∗m

n

)

− 1

sα
Lt
(m−1∑
i=0

(γiγm−1−i)xx(x, y, t) +

m−1∑
i=0

(γiγm−1−i)yy(x, y, t)

)]
(4.35)

with q, ~ and H(x, y, t) set to 0,−1 and 1 respectively. Inverse Laplace transform of (4.35) is thus given

by

γm(x, y, t)− χ∗mγm−1(x, y, t) =

−

[
γm−1(x, y, t)− L−1

t

{(
1

s
exp

[
1

2

√
a

2
(x+ y)

]
+

1

sα
Lt(γm−1(1− aγm−1)(x, y, t))

)(
1− χ∗m

n

)}

− L−1
t

{
1

sα
Lt
(m−1∑
i=0

(γiγm−1−i)xx(x, y, t) +
m−1∑
i=0

(γiγm−1−i)yy(x, y, t)

)}]
(4.36)

χ∗m =

0, if m ≤ 1

n, if m > 1.
. (4.37)

Using (4.36) and (4.37) for the first few terms of our solution, we obtain:

γ0(x, y, t) = exp

[
1

2

√
a

2
(x+ y)

]
= γ0,

γ1(x, y, t) = exp

[
1

2

√
a

2
(x+ y)

]
tα

Γ(α+ 1)
= γ0

tα

Γ(α+ 1)
,

γ2(x, y, t) = exp

[
1

2

√
a

2
(x+ y)

]
t2α

Γ(2α+ 1)
= γ0

t2α

Γ(2α+ 1)
,
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γ3(x, y, t) = exp

[
1

2

√
a

2
(x+ y)

]
t3α

Γ(3α+ 1)
= γ0

t3α

Γ(3α+ 1)
,

...

γ(x, y, t) =
∞∑
m=0

γm(x, y, t) = γ0

[
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ . . .

]

γ(x, y, t) =
∞∑
m=0

γm(x, y, t) = γ0

[
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ . . .

]

= γ0

∞∑
m=0

tmα

Γ(mα+ 1)
.

(4.38)

For α = 1, (4.38) becomes

γ(x, y, t) = γ0

∞∑
m=0

tm

Γ(m+ 1)
. (4.39)

(4.39) can be reduced to the exact solution

γ(x, y, t) = γ0E1,1(t) = γ0e
t

= exp

[
1

2

√
a

2
(x+ y)

]
et

= exp

[
1

2

√
a

2
(x+ y) + t

]
,

(4.40)

where E1,1(t) is the Mittag-Leffler function, a prominent generalization of the exponential function. It is

generally defined as

Eα,β(t) =

∞∑
k=0

tk

Γ(αk + β)
,

where α > 0 and β > 0. In some of our examples, we have α = β = 1, which reduces to the exponential

function:

E1,1(t) =
∞∑
k=0

tk

Γ(k + 1)
=
∞∑
k=0

tk

k!
= et.

The Mittag-Leffler function appears in fractional calculus to model processes with memory and hereditary

properties – a major advantage of fractional calculus and its use [1, 2].

5 Discussion of Results

As shown in the examples above, we have added to the list of methods applied to this particular biological

population model in the fractional order sense and by extension the integer order when α = 1. Compared
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to other methods cited in the examples we are not concerned with other values of ~ thus have only solved

for the value of ~ = −1. Other methods from [3–10,15] outlined a procedure for the values of ~ which can

be used to plot the ~-curve – see [15] for example. A very close method to the method we used in this

paper is the one described in the 2013 paper by [8] where they applied Homotopy Analysis Transform

Method (HATM), a combination of Laplace transformation and the Homotopy Analysis Method described

in [11, 12]. What distincts our work from theirs is our method applied a different approach allowed by

the value of q which changes the course of solution and its rate of convergence. For HATM, q ∈ (0, 1]

depending on the condition of the model while q ∈ (0, 1
n ] for qLHAM. Example 4.1 had already been

solved in [15] but we also show it here so that we compare the solution with those of others order than

the ones described in [15].

We displayed the graphs of all the problems with different fractional orders in this section. Graphing

the 2D, 3D, and contour plots of the provided problems using appropriate values. The dynamical

structures of the fractional biological population model were explained by these graphs:

(a) 3D-plot (b) Contour plot (c) 2D-plot

Figure 5.1: The absolute graph of Example 4.1 with η = 0.6, α = 0.2 and y = −1.3.
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(a) 3D-plot (b) Contour plot (c) 2D-plot

Figure 5.2: The absolute graph of Example 4.2 with η = 1.3, α = 0.4 and γ0 = 0.6.

(a) 3D-plot (b) Contour plot (c) 2D-plot

Figure 5.3: The absolute graph of Example 4.3 with η = 2.3, α = 0.6 and γ0 = 3.1.
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(a) 3D-plot (b) Contour plot (c) 2D-plot

Figure 5.4: The absolute graph of Example 4.4 with η = 0.5, α = 0.1 and γ0 = −1.3.
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