Earthline Journal of Chemical Sciences <p style="text-align: justify;">The Earthline Journal of Chemical Sciences (e-ISSN: 2581-9003) (CODEN: EJCSB4) is a peer-reviewed international journal devoted to publishing original research articles, review articles as well as short reports containing substantial contributions in any direction of Chemical Sciences. The major areas covered by the journal include, but are not limited to, the following:&nbsp;Agricultural Chemistry, Analytical Chemistry, Biochemistry, Catalysis, Clinical Chemistry, Corrosion Chemistry, Environmental Chemistry, Food Chemistry, Green Chemistry, Industrial Chemistry, Inorganic Chemistry, Materials Chemistry, Molecular Chemistry, Organic Chemistry, Petrochemistry, Pharmaceutical Chemistry, Physical Chemistry, Phytochemistry, Polymer Chemistry, Structural Chemistry, Supramolecular Chemistry. Articles based on Chemical Engineering, Mathematical Chemistry and Chemical Education are also welcome.&nbsp;</p> Earthline Publishers, Madanambedu, Chittoor, Andhra Pradesh, India en-US Earthline Journal of Chemical Sciences 2581-9003 <p><img src="/public/site/images/ejcs/88x311.png"><br>This work is licensed under a <a href="" rel="license">Creative Commons Attribution 4.0 International License</a>.</p> Effect of Copper on 1,1-Diamino-2,2-dinitroethene - A DFT Treatment <p style="text-align: justify;">Interaction of 1,1-diamino-2,2-dinitroethene which is a well known explosive called FOX-7 and copper atom is investigated computationally in the form of 1:1 composite, at the levels of UB3LYP/6-31++G(d,p) and UB3LYP/LANL2DZ within the restrictions of density functional theory. Some geometrical, spectral and quantum chemical data have been obtained and discussed. The both levels of computational approach yield geometries in accord with each other but LANL2DZ basis set produced unreasonable charges for the atoms of the composite. However, both of the methods indicate that copper atom donates some electron population to the organic component meantime the nitro groups change their conformation by twisting about the C-NO<sub>2</sub> bonds. Thus, the push-pull character of the system varies which should affect some of the explosive properties, beside the others.</p> Lemi Türker Copyright (c) 2020-09-21 2020-09-21 5 1 1 17 10.34198/ejcs.5121.117