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Abstract

In the present computational study, the 1:1 binary composite of FOX-7 and TNAZ 
system and the effect of magnesium on it have been investigated within the constraints of 
density functional theory at the level of B3LYP/6-31++G(d,p). The composites with and 
without magnesium are found to be electronically stable. Thermo chemically they have 
exothermic heat of formation and favorable free energy of formation values. The data 
reveal the striking effect of Mg such that narrowing of the frontier molecular orbitals 
occurs which should cause the increased sensitivity to impact stimulus. Some 
geometrical, quantum chemical and spectral data also have been harvested and discussed.

1. Introduction

FOX-7 is an insensitive high explosive also known as DADE or DADNE [1-3]. Its 
chemical name is 1,1-diamino-2,2-dinitroethylene. Its explosive potential has been 
investigated thoroughly [4-18].

The nitration of 4,6-dihydroxy-2-methylpyrimidine and then hydrolysis is one of the 
ways to synthesis of FOX-7 [18]. FOX-7 is a push-pull type molecule having donor and 
acceptor groups in its structure, namely amino and nitro groups, respectively. In spite of 
the fact that it is a small molecule, it exhibits abundant chemical reactivity. Of those, 
coordination reactions, nucleophilic substitutions, acetylate reactions, oxidation and 
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reduction reactions, electrophilic addition reactions etc., are to be mentioned [19,20]. 
Compared to RDX, FOX-7 is much less sensitive in terms of impact, friction, and 
electrostatic discharge sensitivities [21]. Previous couple of decades have evidenced 
several FOX-7 based propellant formulations which have been developed in order to 
obtain propellant composites possessing reduced smoke production [22].

On the other hand, TNAZ is an energetic small–ring compound (1,3,3-
trinitroazetidine). It is a four-membered nitrogen heterocyclic ring, highly nitrated, 
having C-NO2 and N-NO2 groups. In recent years, it is almost the most widely studied 
explosive [23,24]. In comparison to conventional melt castable explosive 2,4,6-
trinitrotoluene (TNT), it exhibits improved performance such that its performance is 
approximately 30% greater than TNT. The presence of strained ring system is assumed to 
be responsible factor contributing some additional energy in to TNAZ [25-30]. The 
literature, has numerous reported methods for the synthesis of 1,3,3-trinitroazetidine [31].

TNAZ, has been proposed as potential replacement for TNT because of its high 
performance and being melt castable explosive [32]. TNAZ having low melting point 
(101 oC) enables the processing of formulations on modified production lines. It shows 
remarkable thermal stability (>180 oC) [33]. Also it has many additional advantages over 
the known explosives. Some of them to be mentioned are highly energetic material, more 
powerful than RDX and is less vulnerable than most other nitramines [34,35]. TNAZ 
unlike HMX, is soluble in molten TNT moreover it is compatible with certain materials 
such as aluminum, steel, brass and glass [36-38].

The compatibility of TNAZ with some energetic components and inert materials of 
solid propellants was studied by using the pressure DSC method [39]. On the other 
hand, desensitization of TNAZ via molecular structure modification has been 
investigated theoretically [40].
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On the other hand, certain metals usually are added into explosive compositions to 
improve their performances. Aluminum and magnesium are the most widely used 
materials for this purpose. Titanium, zirconium and tungsten are also used [41].

In the present study, effect of magnesium on the FOX-7+TNAZ composite has been 
investigated quantum chemically within the realm of density functional theory (DFT).

2. Method of Calculation

In the present study, the initial structural optimizations of all the structures leading to 
energy minima have been achieved by using MM2 method followed by semi-empirical 
PM3 self-consistent fields molecular orbital (SCF MO) method [42,43] at the restricted 
level [44,45]. Subsequent optimizations were achieved at Hartree-Fock level using 
various basis sets. Then, the structural optimizations were managed within the framework 
of density functional theory (DFT) [46,47] at the level of B3LYP/6-31++G(d,p) [45,48]. 
The exchange term of B3LYP consists of hybrid Hartree-Fock and local spin density 
(LSD) exchange functions with Becke’s gradient correlation to LSD exchange [47,49]. 
The correlation term of B3LYP consists of the Vosko, Wilk, Nusair (VWN3) local 
correlation functional [50] and Lee, Yang, Parr (LYP) correlation correction functional 
[51]. Also, the vibrational analyses have been done. The total electronic energies are 
corrected for the zero point vibrational energy (ZPE). The normal mode analysis for each 
structure yielded no imaginary frequencies for the 3N–6 vibrational degrees of freedom, 
where N is the number of atoms in the system. This indicates that the structure of each 
molecule corresponds to at least a local minimum on the potential energy surface. All 
these calculations were done by using the Spartan 06 package program [52].

3. Results and Discussion

The present research has shown that FOX-7 forms a stable 1:1 composite with 
TNAZ. Figure 1 shows the optimized structures of it where the amino hydrogens of 
FOX-7 are next to the nitramine NO2 group of TNAZ molecule. The figure also shows 
the optimized structure of the ternary composite, FOX-7+ TNAZ+ Mg. It is also a stable 
composite. However, the presence of Mg atom causes some conformational changes of 
the groups. Figure 1 shows the direction of the dipole moment vectors as well. Note that 
the tip point of the dipole moment vector aims to the geminal nitro groups of TNAZ in 
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FOX-7+TNAZ composite whereas in the presence of Mg it is directed to the nitro group 
of the FOX-7 in the ternary composite.

Figure 1. Optimized structures of the composites considered.

Table 1 displays some calculated properties of these composite structures. Note that 
the ternary composite has an appreciably high dipole moment compared to the binary 
one. Probably, the presence of Mg atom causes some changes in the bond dipoles by 
influencing the bond lengths and distribution of the charges.

Table 1. Some properties of the composites considered.

Composite Dipole 
moment 
(Debye)

Polarizability Ovality Area

(Å²)

Volume

(Å³)

FOX-7+TNAZ 8.64 60.59 1.59 305.23 249.50

FOX-7+TNAZ+Mg 10.89 61.97 1.59 311.56 258.30

Polarizabilities in 10-30 m3 units.

Figure 2 shows the electrostatic potential charges (ESP) on the atoms of the 
composites. Note that the ESP charges are obtained by the program based on a numerical 
method that generates charges that reproduce the electrostatic potential field from the 
entire wavefunction [52]. As seen in the figure Mg atom acquires some positive charge in 
the composite.
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Figure 2. Electrostatic charges on the atoms of the composites.

Figure 3 shows the electrostatic potential maps of the composites considered. 
Variation of colors between the maps may give some idea about how the transferred 
electron population from Mg is shared between the organic components of the second 
composite. Note that red/reddish and blue/ green regions stand for negative and positive 
potential fields, respectively. As seen in the figure the Mg atom donates some electron 
population mostly into FOX-7 component and red region extends its boundary at the 
expense of the blue region.

Figure 3. Electrostatic potential maps of the composites.

Figure 4 stands for the calculated IR spectra of the composites. The FOX-7+TNAZ 
spectrum shows symmetrical and asymmetrical N-H stretchings (FOX-7) in the region of 
3698-3480 cm-1. They appear at 3624-3426 cm-1 in the spectrum of the Mg having 
composite. The symmetrical and asymmetrical C-H stretchings of TNAZ component 
occur at 3099-3189 cm-1 and 3100-3188 cm-1 in the binary and ternary composites, 
respectively. The NO2 and C=C stretchings occur around 1600 cm-1 in both of the 
composites.
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Figure 4. Calculated IR spectra of the composites.

Table 2 shows some of the thermo chemical data of the composites considered. The 
data reveal that formations of the composites are exothermic and favored. 

Table 2. Some thermo chemical properties of the composites.

Composite Hº Sº (J/molº) Gº

FOX-7+TNAZ -3636092.881 555.95 -3636258.631

FOX7+TNAZ+Mg -4161452.173 573.49 -4161623.174

Energies in kJ/mol.

Table 3 shows some energies of the composites considered where E, ZPE and EC 
stand for the total electronic energy, zero point vibrational energy and the corrected total 
electronic energy, respectively. As the data reveal, both of the structures are 
electronically stable.

Table 3. Some energies of the composites.

Composite E ZPE EC

FOX-7+TNAZ -3636632.72 524.33 -3636108.39

FOX7+TNAZ+Mg -4161990.24 524.43 -4161465.81

Energies in kJ/mol.

FOX-7+TNAZ

FOX-7+TNAZ+Mg
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Figure 5 shows some of the molecular orbital energy levels of the composites. In the 
figure the energy scales are very comparable and the striking effect of Mg is evident. The 
HOMO and NEXTHOMO levels of FOX-7+TNAZ composite have been highly raised 
up while the LUMO and NEXTLUMO levels are somewhat lowered down by the effect 
of Mg.

                        

Figure 5. Some of the molecular orbital energy levels of the composites.

It is usually the case that electron donor groups raise both the HOMO and LUMO 
levels of the parent system while electron attractors lower both of them. The increased 
conjugation causes the narrowing of the frontier molecular orbital energy gap. Thus in the 
present system, the presence of Mg atom donates some electron population and raises up 
the HOMO level but some sort of back donation should occur to lower the LUMO level. 

FOX-7+TNAZ

FOX-7+TNAZ+Mg
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This effect somehow means increased conjugation between the Mg atom and the organic 
components. This observation brings in mind that the Mg atom undergoes some complex 
formation with NH2 or NO2 group or both of the components. Mg atom has the ground 
state electronic configuration of 1s22s22p63s2. It is known that magnesium can form 
various chelate and/or non-chelate complexes with various substances [53].

Table 4 shows the HOMO, LUMO energies and the interfrontier molecular orbital 
energy gaps (∆ε) of the composites considered. The data reveal that the Mg atom causes 
appreciable degree of frontier molecular orbital (FMO) energy gap narrowing.

Table 4. The HOMO, LUMO energies and ∆ε values of the composites.

Structure HOMO LUMO ∆ε

FOX-7+TNAZ -748.30 -332.40 415.9

FOX-7+TNAZ+Mg -545.87 -397.91 147.96

Energies in kJ/mol.

It is assumed that narrowing of FMO energy gap causes increased sensitivity to 
impact stimulus [54,55]. Hence, FOX-7+ TNAZ+ Mg ternary composite should be more 
sensitive than FOX-7+TNAZ binary composite. Usually metals are incorporated with 
energetic materials to increase their energy output. However, in some case, like the 
present one they might change the ballistic properties in undesirable directions. However, 
variation of molar ratio of the components might overcome emergence of undesirable 
properties.

Figure 6 stands for the time-dependent density functional UV-VIS spectra of the 
composites. The highly striking bathochromic effect into the visible part of the spectrum 
of the Mg containing composite is to be mentioned.

FOX-7+TNAZ



Effect of magnesium on FOX-7+TNAZ composite - A DFT treatise

Earthline J. Chem. Sci. Vol. 11 No. 2 (2024), 267-282

275

Figure 6. Calculated UV-VIS spectra of the composites considered.

Figure 7 shows the bond densities in the composites. Note that bond density contains 
fewer electrons in total and demarks atomic connectivity of a molecule.

Figure 7. Bond densities in the composites. 

Figure 8. shows the bond densities on the HOMOs of the composites. 

Figure 8. Bond densities on the HOMOs of the composites.

Figure 9 shows the HOMO and LUMO patterns of the composites considered. As 
seen in the figure the HOMO of FOX-7+TNAZ composite exhibits some π-symmetry 
whereas it is highly perturbed in the Mg containing composite. TNAZ molecule does not 
contribute in to the HOMO of both composites. As for the LUMOs, this time FOX-7 
component does not have any contribution in both of the composites.

FOX-7+TNAZ+Mg
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Figure 9. The HOMO and LUMO patterns of the composites considered.

Figure 10 shows the local ionization map of the composites. In a local ionization 
potential map conventionally red regions on the density surface indicate areas from which 
electron removal is relatively easy, meaning that they are subject to electrophilic attack.

Figure 10. Local ionization map of the composites.

Figure 11 shows the LUMO maps of the composites. A LUMO map displays the 
absolute value of the LUMO on the electron density surface. Conventionally, the 
blue/bluish color stands for the maximum value of the LUMO and the color red/reddish, 
the minimum value.
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Figure 11. The LUMO maps of the composites.

The chemical function descriptors (CFD) of the composites are shown in Figure 12 
where HBA and HBD stand for hydrogen bond acceptor and donor, respectively. As seen 
in the figure the magnesium (in its cation-like form) does not have any substantial change 
on the binary composite in terms of CFD character of the amino and nitro groups of the 
components. However, it does not mean that all the amino groups or the nitro groups 
possess the same chemical avidity in both of the composites and even in the same partner 
of the particular composite. 

Figure 12. The chemical function descriptors (CFD) of the composites (Green: HBA;

Purplish: HBA, HBD).

4. Conclusion

Presently, FOX-7+TNAZ and FOX-7+TNAZ+Mg composites are considered within 
the limitations of the density functional theory at the applied level of calculation. The 
effect of Mg on 1:1 binary composite is found to be striking, causing the narrowing of the 
frontier molecular orbital energy gap which should result in increased sensitivity to 
impact. The Mg atom donates some electron population, mostly into FOX-7 component 
and itself acquiring some partial positive charge. The positively charged magnesium atom 
lowers the LUMO energy level either by complexation or through space effect. This 
influence manifests itself in the UV-VIS spectrum as great bathochromic effect. 
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However, one has to be aware of the fact that varying the molar ratios of the 
components, a completely different situation might arise.
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