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Abstract 

1,1-diamino-2,2-dinitroethylene, commonly known as FOX-7, is an insensitive pull-push 

type explosive of nitramine class. Aluminized FOX-7, depending on its Al content and 

multiplicity was found to be susceptible to decomposition. Gallium atom, a third group 

element below Al, also has an open shell electronic configuration. The present study 

considers FOX-7+nGa composites (n:1-3) and within the constraints of density functional 

theory at the level of UB3LYP/6-311++G(d,p) it has been found that gallium atom does 

not initiate any bond rupture. However, certain distortions in bond lengths and angles 

occur which might have some effect on the ballistic properties of FOX-7. Certain 

geometrical, quantum chemical and energy values of the composites as well as some 

spectral properties are presented. 

1. Introduction 

1,1-diamino-2,2-dinitroethylene (DADE, DADNE) is an insensitive high explosive 

known as FOX-7 [1]. It was synthesized in 1998 by members of the Swedish Defense 

Research Agency (FOI) [2, 3]. Many researchers have investigated its explosive potential 

thoroughly [4-18]. Nitration of 4,6-dihydroxy-2-methylpyrimidine and then hydrolysis 

constitutes an alternative route to FOX-7 [19]. 

It is a novel insensitive high-energy material possessing good thermal stability and 

low sensitivity. Moreover, it exhibits excellent application performance among the           

.  
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insensitive ammunitions and solid propellants. It has a simple molecular composition and 

structure, but it exhibits abundant chemical reactivity including coordination reactions, 

nucleophilic substitutions, acetylate reactions, oxidation and reduction reactions, 

electrophilic addition reactions etc., [20, 21]. FOX-7 is much less sensitive than RDX (in 

terms of impact, friction, and electrostatic discharge sensitivities) [22] although RDX or 

HMX possesses the same C/H/N/O ratio as FOX-7 has. FOX-7 possesses many 

polymorphic forms of such as α- and β-forms. Of which the α-form reversibly turns into 

β-form by heat treatment [23, 24]. At higher temperature, an irreversible conversion of 

β-polymorph occurs to yield γ-phase which decomposes at 504 K [23] and its 

decomposition has been extensively searched [25]. The effect of high pressure on the 

crystal structure of FOX-7 has also been studied [26]. In the last couple of decades 

several FOX-7 based propellant formulations have been developed in order to obtain 

propellant composites having a minimum or reduced smoke production [27]. 

Recently, some novel derivatives of FOX-7 and their properties as energetic 

materials have been reported [28, 29]. Some aluminized FOX-7 compositions were 

reported [30, 31]. Also some molecular orbital calculations were reported on aluminized 

FOX-7 [32-36]. 

In the present study, interaction of 1,1-diamino-2,2-dinitroethylene and gallium 

(FOX-7+nGa (n:1-3)) have been investigated at the molecular level within the restriction 

of density functional theory (DFT). 

2. Method of Calculations 

Geometry optimizations of all the presently considered structures leading to energy 

minima were initially achieved by using MM2 method followed by semi-empirical PM3 

self-consistent fields molecular orbital (SCF MO) method [37, 38] at the restricted level 

[39, 40]. Subsequent optimizations were achieved at Hartree-Fock level using various 

basis sets. Then, the geometry optimizations were managed within the framework of 

density functional theory (DFT) using unrestricted B3LYP functional (UB3LYP) [41, 

42] at the level of 6-311++G(d,p). The exchange term of B3LYP consists of hybrid 

FOX-7 
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Hartree-Fock and local spin density (LSD) exchange functions with Becke’s gradient 

correlation to LSD exchange [42, 43]. Note that the correlation term of B3LYP consists 

of the Vosko, Wilk, Nusair (VWN3) local correlation functional [44] and Lee, Yang, 

Parr (LYP) correlation correction functional [45]. Presently, the vibrational analyses 

have been also done at the same level of calculations which had been performed for the 

optimizations. The total electronic energies (E) are corrected for the zero point 

vibrational energy (ZPE) to yield Ec values. The normal mode analysis for each structure 

yielded no imaginary frequencies for the 3N-6 vibrational degrees of freedom, where N is 

the number of atoms in the system. This indicates that the structure of each molecule 

corresponds to at least a local minimum on the potential energy surface. All these 

calculations were done by using the Spartan 06 package program [46].  

3. Results and Discussion 

Quite often some metals are employed with certain explosives to get better 

performance exhibiting ammunitions. Aluminum is one of them. However, a recent 

computational study has revealed that depending on the aluminum content and over all 

spin state of the composite, aluminized FOX-7, may undergo decomposition, while 

aluminum atom is oxidized and one of the N-O bonds of FOX-7 is broken [36].  

In the present study, various gallium composites of FOX-7 are considered as 

analogous approach to its above mentioned aluminized composites. Gallium atom which 

is a third group element below the aluminum has 1s22s22p63s23p63d104s24p1 electronic 

configuration in its ground state. The ionization potentials of the electrons of Ga atom in 

valency shell (n:4) are 30.6, 20.43 and 5.97 eV for 4s, 4s and 4p, respectively [47]. 

Whereas, the respective potentials for Al atom (3s, 3s and 3p) are 28.31, 18.74 and 5.96 

eV [47]. The effective nuclear charge of Ga atom is greater than that of aluminum. 

Hence, the gallium atom shows smaller tendency to ionize than the aluminum atom [47]. 

All these information suggest that the presence of Ga should not cause any bond 

dissociation (maybe up to certain number of Ga atoms) of FOX-7 by transferring 

sufficient amount of electron density. However, it might cause deformation type 

perturbations on FOX-7 structure, thereby influencing its push-pull type behavior which 

might causes some changes on its ballistic properties. Below the influence of Ga on 

FOX-7 structure at the molecular level has been investigated. Note that depending on the 

number of Ga atoms, the composites have different multiplicities. 
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Figure 1 shows the optimized structures of FOX-7 and its gallium composites from   
.  

                                      

                                 

                                    

                                      

                                                 
 

                                   

Figure 1. Optimized structures of FOX-7 and FOX-7+Ga composites from different 

angles of view. 
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different angles of view. As seen in the figure, FOX-7 molecule is nearly planar. This 

geometry, together with two dimensional network of hydrogen bonds, contributes the 

pull-push character of the molecule and stability thus providing insensitiveness to the 

molecule. The electron donating ability of the amino groups in FOX-7 satisfies greatly 

the electron demand of the nitro groups, thus reducing their oxidative power. In the 

FOX-7+Ga composites, this nearly planar geometry is distorted bit by bit and in FOX-

7+3Ga quartet the nitro groups became nearly perpendicular to the plane engendered by 

the amino groups and carbon atoms. That means that the composite should have lost its 

pull-push type character. 

As seen in the figure some bond angles and dihedral angles concerning the amino as 

well as the nitro groups change as the number of Ga atoms vary. Figure 2 shows the bond 

lengths of FOX-7 and its gallium composites. The carbon-carbon bond lengths in the 

composites do not vary much (1-38-1.48 Å), but N-O bond which is 1.48 Å (in FOX-7 

1.21-1.24 Å) in singlet FOX-7+2Ga and C-NO2 bond which is 1.52 Å (in FOX-7 1.43 Å) 

in quartet FOX-7+3Ga notably elongate. 
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Figure 2. Bond lengths (Å) of FOX-7 and its gallium composites. 

The presently calculated bond lengths of FOX-7 are in good accord with the 

literature data such that the reported length of the bond between carbon atoms in the 

molecule (1.456 Å) is intermediate between the length of a normal single bond (1.54 Å) 

and a normal double bond (1.34 Å). The lengths of the C–NO2 bonds (1.42 and 1.39 Å) 

are close to the normal bond length of nitrogen-carbon with sp2 hybridization (1.40 Å), 

but the C–NH2 bonds (1.31 and 1.32 Å) are shorter by about 0.1 Å. The molecule has a 

generally planar structure [10, 48, 49]. 

Figure 3 shows the IR spectra of FOX-7 and its gallium composites. FOX-7 

possesses two N-H stretchings at 3469-3676 cm−1. Its NH2 scissoring vibrations occur at 

1644 cm−1. The C=C and C-N stretchings happen in the region of 1568-1623 cm−1. 

FOX-7+Ga composite has three N-H stretchings (asymmetric and symmetric) in the 

region of 3344-3667 cm−1. Whereas FOX-7+2Ga singlet has four but FOX-7+2Ga triplet 

just two N-H stretchings. Depending on the number and multiplicity of the composites 

IR spectra of them below 1500 cm−1 exhibit some peculiarities. 
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Figure 3. The calculated IR spectra of FOX-7 and its gallium composites. 
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Table 1 tabulates some properties of the composites. The first column includes 
PM3//UB3LYP/6-311++G(d,p) values for the heat of formation values at the standard 
states in vacuum whereas the second column lists T1 results. The composite formation 
appears to be exothermic process in all the cases. T1 calculations involve more elaborate 
treatment. For FOX-7+2Ga case the triplet state has less exothermic heat of formation 
value in both cases of the calculations. Whereas for FOX-7+3Ga composite the quartet is 
more exothermic than the doublet by PM3//UB3LYP/6-311++G(d,p) level of 
calculations in contrast to T1 calculations which yield results that the quartet happens to 
be less exothermic than the doublet. 

Table 1. Some properties of the composites. 
Structure Heat of 

formation* 

Heat of 

formation** 

Area 

(Å2) 
Volume 

(Å3) 
Ovality Dipole moment 

(Debye) 
MW 

(amu) 
FOX-7+Ga 
Doublet 

-107.552 -4754520.42 162.97 134.30 1.28 6.60 217.80 

FOX-7+2Ga 
Singlet 

-227.515 -9509154.14 186.58 158.74 1.32 6.04 287.52 

FOX-7+2Ga 
Triplet 

-193.662 -9509024.15 195.76 161.81 1.36 2.92 287.52 

FOX-7+3Ga 
Doublet 

-344.364 -14263573.76 212.69 184.95 1.35 7.96 357.25 

FOX-7+3Ga 
Quartet 

-582.205 -14263121.28 202.77 182.90 1.30 4.76 357.25 

Heat of formation values in kJ/mol.*PM3// UB3LYP/6-311++G(d,p), **T1 

As for the areas and volumes, as normally expected, they increase as the number of 
Ga atoms increase. However, the greater multiplicity state has greater values keeping the 
Ga content be the same but the quartet has smaller area and volume as compared to the 
doublet for FOX-7+3Ga in the case of FOX-7+3Ga composites. The ovality follows the 
same trend. 

On the other hand, the order of dipole moments of the composites (FOX-7+nGa) is 
3Ga(d) > Ga(d) > 2Ga(s) > 3Ga(q) > 2Ga(t) where the letter in parenthesis indicate the 
multiplicities. 

Figures 4 and 5 show the ESP and natural charges on the atoms of the composites. 
Note that the ESP charges are obtained by the program based on a numerical method that 
generates charges that reproduce the electrostatic potential field from the entire 
wavefunction [46]. In both types of charge calculations Ga atom(s) acquire some positive 
charge less than unity, causing some distortions in the pull-push contributors, namely the 
amino and nitro groups. The carbon-carbon bond lengths do not vary appreciably (see 
Figure 2) but the others are affected which are accompanied by changes in bond and 
dihedral angles. In some of the composites considered, the groups are notably out of 
plane, e.g., quartet state of FOX-7+3Ga. 
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Figure 4. ESP charges on atoms of the composites. 



Lemi Türker  

http://www.earthlinepublishers.com 

280 

 

              

 

    

 

Figure 5. Natural charges on atoms of the composites. 
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Table 2 shows various energies of the composites considered where E, ZPE and Ec 

stand for the total electronic energy, zero-point vibrational energy and the corrected total 

electronic energy, respectively. As seen in the table, keeping the number of Ga atoms in 

each set, lower multiplicity having composite is more stable than the higher one based on 

Ec values.  

Table  2. Various energies of the composites. 

Structure E ZPE Ec 

FOX-7+Ga 
Doublet 

-6625228.50 236.465330 -6624992.035 

FOX-7+2Ga 
Singlet 

-11679113.0 237.189441 -11678875.81 

FOX-7+2Ga 
Triplet 

-11679017.4 235.419464 -11678781.98 

FOX-7+3Ga 
Doublet 

-16732845.5 236.923245 -16732608.58 

FOX-7+3Ga 
Quartet 

-16732666.4 232.273075 -16732434.13 

Energies in kJ/mol. 

Figure 6 shows some of the molecular orbital energy levels of the composites. Note 

that some of the composites have certain multiplicities which lead to open shell 

structures and then the unrestricted calculations yield α- and β-type orbitals (in the 

figure a- and b-types). In those cases α-HOMO energy levels are higher than the 

respective β-type orbital energies. A similar situation happens for the LUMO energy 

levels with the exception of FOX-7+ Ga case. The HOMO and LUMO energy levels are 

collected in Table 3. It also includes ∆ε values which are the interfrontier energy gaps, 

namely εLUMO-εHOMO. The order of HOMO energy levels of FOX-7+nGa composites is 

2Ga(s)<Ga(d) <3Ga(q)<2Ga(t)<3Ga(d). Whereas the LUMO energy levels follow the 

order of Ga(d)<2Ga(s)<3Ga(d)<2Ga(t)<3Ga(q). Consequently, the order of ∆ε values 

happens as 3Ga(q)>2Ga(s)>2Ga(t)>Ga(d)>3Ga(d). Note that ∆ε values in the table are 

constituted in between the smallest possible difference of the HOMO and LUMO 

energies corresponding to α- and/or β-type orbitals. 
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Figure 6. Some of the molecular orbital energy levels of the composites. 
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Table 3. Some molecular orbital energies of the composites. 

Structure HOMO LUMO ∆ε 

FOX-7+Ga 
Doublet 

-492.561583 -258.310027 234.2516 

FOX-7+2Ga 
Singlet 

-547.982115 -237.037986 310.9441 

FOX-7+2Ga 
Triplet 

-443.015922 -136.783885 306.232 

FOX-7+3Ga 
Doublet 

-409.494317 -202.589026 206.9053 

FOX-7+3Ga 
Quartet 

-480.136021 -133.599811 346.5362 

Energies in kJ/mol. 

The time-dependent UV-VIS spectra (TDDFT) of the composites are shown in 

Figure 7. As seen in the figure, FOX-7+2Ga singlet and FOX-7+3Ga doublet absorptions 

should occur in the visible region whereas the others occur in the UV-VIS range of the 

spectrum. 
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Figure 7. UV-VIS spectra of FOX-7 and its gallium composites. 

Figure 8 shows the effect of gallium atoms on the HOMO and LUMO patterns of the 

composites. 
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Figure 8. The HOMO and LUMO patterns of the composites. 
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Figure 9 shows the electrostatic potential maps of the composites. Note that in the 

figure red and blue regions stand for electronegative and electropositive potential 

regions, respectively. As seen in the figure, Ga atom(s) perturbs electrostatic potential 

field around FOX-7 although no bond ruptures occur.  

 

 

 

Figure 9. Electrostatic potential maps of FOX-7 and its gallium composites. 
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4.  Conclusion 

Within the restrictions of the density functional theory at the applied level, it has 

been found that FOX-7+nGa (n:1-3) composites are exothermic and electronically stable 

no matter the multiplicities of the composites are. However, certain bond length and 

angle distortions occur which affect certain geometrical, quantum chemical and energetic 

properties of FOX-7. All those perturbations probably affect ballistic properties of the 

explosive. 
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