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Push-pull interactions in cis/trans diaminodinitro ethylenes — DFT treatment

Lemi Tiirker

Department of Chemistry, Middle East Technical University, Universiteler, Eskisehir Yolu No: 1, 06800 Cankaya/Ankara, Turkey
e-mail: Iturker@gmail.com; lturker@metu.edu.tr

Abstract

The cis and trans isomers of 1,2-diamino-1,2-dinitroethylene are even alternant systems and partly exist in
structure of FOX-7 explosive. Presently, they have been investigated thoroughly within the constraints of density
functional theory at the level of B3LYP/6-311++G(d,p). The collected data have revealed that the optimized
structures of them have exothermic heats of formation and favorable Gibbs free energy of formation values. They
are thermally favored and electronically stable at the standard states. Various structural and quantum chemical
data have been collected and discussed, including IR and UV-VIS spectra.

1. Introduction

Cis and trans-isomers of 1,2-diamino-1,2-dinitroethylenes are structures which could be constructed from
structure of FOX-7 (1,1-diamino-2,2-dinitroethylene ) by certain structural modifications. FOX-7 is a novel
insensitive high-energy material exhibiting good thermal stability and low sensitivity. In addition to that, it
possesses excellent application performance among the solid propellants and insensitive ammunitions. It
exhibits abundant chemical reactivity [1,2]. FOX-7 is much less sensitive than RDX in terms of impact, friction,

and electrostatic discharge sensitivities.

FOX-7 is classified as a push-pull type alkene having two electron-donating substituents (NH;) on one end
of C=C double bond and with two electron-accepting substituents (NO,) at the other end [3,4]. This push-pull
effect is of decisive influence on both the dynamic behavior and the chemical reactivity of this class of
compounds [3,5]. Through the decades various scientists have investigated different aspects of push-pull effect
[6-13].

Presently considered isomeric aminonitroethylenes combine the effects of resonance-donating NH,
(strongly electron donating) and the inductively and mesomerically electron-withdrawing NO, groups in a

molecular framework containing polarizable electronic charge.

In the present density functional study, push-pull interactions in cis/trans diaminodinitro ethylenes have
been investigated.

2. Method of Calculations

In the present study, all the initial optimizations of the structures leading to energy minima have been
achieved first by using MM2 method which is then followed by semi empirical PM3 self consistent fields
molecular orbital method [14-16]. Afterwards, the structure optimizations have been achieved within the
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framework of Hartree-Fock and finally by using density functional theory (DFT) at the level of B3LYP/6-
311++G(d,p) [17,18]. Note that the exchange term of B3LYP consists of hybrid Hartree-Fock and local spin
density (LSD) exchange functions with Becke’s gradient correlation to LSD exchange [19]. The correlation
term of B3LYP consists of the Vosko, Wilk, Nusair (VWN3) local correlation functional [20] and Lee, Yang,
Parr (LYP) correlation correction functional [21]. In the present study, the normal mode analysis for each
structure yielded no imaginary frequencies for the 3N—6 vibrational degrees of freedom, where N is the number
of atoms in the system. This search has indicated that the structure of each molecule considered corresponds to
at least a local minimum on the potential energy surface. Furthermore, all the bond lengths have been
thoroughly searched in order to find out whether any bond cleavages occurred or not during the geometry
optimization process. All these computations were performed by using SPARTAN 06 program [22].

3. Results and Discussion

Figure 1 shows some resonance forms of the isomers considered. As seen in the figure the amino and the
nitro groups on same carbon atom are crossly conjugated in contrast to the case in which the donor and the
acceptor groups are at opposite ends of the ethylenic n-structure.
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Figure 1. Some resonance forms of the isomers considered.

Optimized structures as well as the direction of the dipole moment vectors of the cis and trans isomers
considered are shown in Figure 2. As seen in the figure the cis isomer possesses more effectively
twisted/puckered groups compared to the frans isomer. Obviously this effect is expected to influence the
conjugation in disfavorable manner (partly broken conjugation). Also note that the dipole moment vector of cis
isomer lies in the molecular plane in contrast to the respective vector of the frans isomer which is perpendicular
to the molecular plane. The donor and acceptor groups of the ¢trans isomer form hydrogen bonds in between.
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Figure 2. Optimized structures of the cis and trans isomers considered (three different views).

Figure 3 shows the ESP charges on atoms of the isomers considered. It is note worthy that the ESP charges

are obtained by the program which uses a numerical method that generates charges, thus reproducing the

electrostatic potential field from the entire wavefunction [22].
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Figure 3. ESP charges on atoms of cis and trans isomers considered.

Figure 4 displays the electrostatic potential (ESP) maps of cis and trans isomers considered where negative

potential regions reside on red/reddish and positive ones on blue/bluish parts of the maps. In the cis isomer, one

of the two NH, moieties is appreciably more positive compared to the other one. Whereas in the trans case the

difference is not so pronounced.
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Figure 4. Electrostatic potential maps of cis and trans isomers considered (two different views).

Figure 5 displays the calculated bond lengths (A) of the isomers considered. The trans isomer possesses a
longer C-C bond length as compared to the cis isomer. The difference arises from the fact that ease of flow of
electrons from donor group(s) to the acceptor(s) groups which is due to the configurational and conformational

factors associated with the respective groups.

[}

Figure 5. Calculated bond lengths (A) of the isomers considered.

Table 1 contains some thermo chemical properties of the isomers considered. Whereas, Table 2 includes
some energies of them. The data in Table 1 reveal that the standard heat of formation (H®) values of the isomers
are exothermic and they are favored according to their G° (Gibbs free energy of formation) values. The
algebraic order of H® and G° values are trans< cis. Whereas S° values follow the order of cis> trans.

Table 1. Some thermo chemical properties of the isomers considered.

Isomer H° (au) S° (J/mol®) G° (au)
cis -1571065.516 379.27 -1571178.598
trans -1571114.529 373.16 -1571225.789

Energies in kJ/mol.
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The data in Table 2 reveal that they are all electronically stable structures. The stability order is trans> cis.
Probably favorable steric factors and the hydrogen bondings possible between the donor and acceptor groups
make the frans isomer more stable than the cis isomer. Note that E, ZPE and E stand for the total electronic
energy, zero point vibrational energy and the corrected total electronic energy, respectively [22].

Table 2. Some energies of the isomers considered.

Isomer E ZPE Ec
cis -1571315.38 239.45 -1571075.93
trans -1571363.57 238.95 -1571124.62

Energies in kJ/mol.

Calculated IR spectrums of the isomers considered are displayed in Figure 6. The asymmetric and
symmetric N-H bond stretches of the cis isomer occur at 3614 cm! and 3511 cm™!, respectively whereas they
are at 3681 cm! and 3550 cm! in case of the trans isomer. The carbon-carbon bond stretching of the cis isomer
happens at 1690 cm-!. The peak at 1598 cm™! is the coupled vibrations of asymmetric NO, stretching and NH,
scissoring of the cis isomer. Whereas the symmetric stretchings of NO, and scissoring of NH, occur at 1575

cm'. The spectrum of the trans isomer is relatively simple, various vibrations occur, in coupled manner, at
1512, 1293 and 1157 cm™'.
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Figure 6. Calculated IR spectrums of the isomers considered.

Table 3 includes some properties of the isomers of interest. As expected, the trans isomer has much less
value for the dipole moment. The polarizability is defined according to a multivariable formula which is a
function of Van der Waals volume and hardness [22]. The later one is dictated by molecular orbital energies of
the highest occupied (HOMO) and the lowest unoccupied (LUMO) molecular orbital energies. It is worth
mentioning that the polar surface area (PSA) is defined as the amount of molecular surface area arising from
polar atoms (N,O) together with their attached hydrogen atoms. On the other hand, a negative value for log P
means the compound has a higher affinity for the aqueous phase (it is more hydrophilic).
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Table 3. Some properties of the isomers of interest.

Isomer  Dipole  Polarizability Cv Area  Volume PSA Ovality

moment (J/mol°)  (A?) (A3) (A?
cis 6.50 49.68 108.48 14423 111.66 123.344 1.29
trans 0.51 49.65 111.03  137.60 109.67 114.559 1.24

Dipole moments in debye units. Polarizabilities in 10-° m? units. Log P: -0.31 for the both.

Figure 7 shows the bond densities of the isomers considered. The bond density contains fewer electrons in
total and demarks atomic connectivity.

cis frans

Figure 7. Bond densities of the isomers considered.

Figure 8 shows the local ionization maps of the isomers considered where conventionally red/reddish
regions (if any exists) on the density surface indicate areas from which electron removal is relatively easy,
meaning that they are subject to electrophilic attack. Note that the local ionization potential map is a graph of
the value of the local ionization potential on an isodensity surface corresponding to a van der Waals surface.
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Figure 8. Local ionization maps of the isomers considered (two different views).

The LUMO maps of the isomers presently considered are shown in Figure 9. Note that a LUMO map
displays the absolute value of the LUMO on the electron density surface. The blue color (if any exists) stands
for the maximum value of the LUMO and the red colored region, associates with the minimum value. It is to be

http://www.earthlinepublishers.com



Push-pull interactions in cis/trans diaminodinitro ethylenes — DFT treatment 7

noted that the LUMO and NEXTLUMO (LUMO-+1) are the major orbitals directing the molecule towards the
attack of nucleophiles [22]. Positions where the greatest LUMO coefficient exists is the most vulnerable site in

nucleophilic reactions.

Figure 9. The LUMO maps of the isomers considered (two different views).

Some of the molecular orbital energy levels of the isomers considered are displayed in Figure 10. Note that
that the inner lying occupied molecular orbitals are assumed to be responsible for the thermal stability of the

compound.
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Figure 10. Some of the molecular orbital energy levels of the isomers considered.
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The HOMO and LUMO energies and interfrontier molecular orbital energy gap, Ae (Ae = € umo-€nomo)
values of the isomers considered are included in Table 4.

Table 4. The HOMO and LUMO energies and Ag values of the isomers

considered.

Isomer HOMO LUMO Ag
cis -667.24 -359.31 307.93
trans -634.79 -382.67 252.12

Energies in kJ/mol.

The algebraic orders of the HOMO and LUMO energies are cis < trans and trans < cis, respectively.
Whereas, the interfrontier molecular orbital energy gap values, Ag, possess the order of cis> trans. Thus, the
configuration and conformation of the donor and acceptor groups highly affect the extended conjugation which
is responsible for the HOMO-LUMO energy separation. The trans isomer has smaller interfrontier molecular
energy gap value. Thus, any ballistic property which correlates with the narrowness of it should have the
highest value between the isomers considered. An example is the impact sensitivity, that is narrower the gap,
the explosive becomes more sensitive to an impact stimulus [23,24].

Figures 11 and 12 stand respectively for the HOMO and LUMO patterns of the isomers considered. As seen
in the figures a m-symmetry exists in both types of the orbitals. As seen in the figure, the amino groups in the cis
and trans isomers have larger contribution into the HOMO orbital than the nitro groups.
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Figure 11. The HOMO pattern of the isomers considered (two different views).
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Figure 12. The LUMO pattern of the isomers considered (two different views).

As for the LUMO orbitals, the amino groups again contribute more than the nitro groups in the case of trans
isomer whereas the contributions are quite comparable in the cis isomer.

Figure 13 stands for the NEXTHOMO (HOMO-1) and NEXTLUMO (LUMO+1) patterns of the isomers
considered. In each case the contribution coming from the amino groups is comparably less than the
contribution of the nitro groups.
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Figure 13. The NEXTHOMO and NEXTLUMO patterns of the isomers considered.
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Time dependent density functional UV-VIS spectra of the isomers of interest are shown in Figure 14. The
Amax Values of them are listed in Table 5.
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Figure 14. Time dependent density functional UV-VIS spectra of the isomers of interest.

Table 5. The calculated A, values of the isomers.

Isomers Amax
cis 310.73, 405.49
trans 298.01,412.24

Amax Values in nm.

The cis-trans isomerism affects both of the peaks of the cis isomer, although there is no appreciable
bathochromic effect, the intensities are greatly vary. The calculated intensities of the peaks are related to

magnitudes of the transition moments between the orbitals involved which vary from isomer to isomer [4,25].

4. Conclusion

The present computational study considered cis and trans isomers of 1,2-diamino-1,2-dinitroethylene
within the restrictions of DFT study at the level of B3LYP/6-311++G(d,p). Both of the isomers possess
exothermic H® and favorable G° values. They are electronically stable. The trans isomer is found to be more
stable than the cis, probably due to favorable steric factors and the hydrogen bondings which is possible
between the donor and acceptor groups. In spite of the fact that these are isomeric structures, the configuration
and conformation of the donor and acceptor groups affect the push-pull interactions which cause various
differences to arise when some properties are considered, such as IR and UV-VIS spectra.
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