Strong Insertion of a Contra-α-continuous Function between Two Comparable Real-valued Functions

Majid Mirmiran1 and Binesh Naderi2

1Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran
 e-mail: mirmir@sci.ui.ac.ir

2School of Management and Medical Information, Medical University of Isfahan, Iran
 e-mail: naderi@mng.mui.ac.ir

Abstract

Necessary and sufficient conditions in terms of lower cut sets are given for the insertion of a contra-α-continuous function between two comparable real-valued functions.

1. Introduction

The concept of a preopen set in a topological space was introduced by Corson and Michael in 1964 [4]. A subset A of a topological space (X, τ) is called preopen or locally dense or nearly open if $A \subseteq \text{Int}(\text{Cl}(A))$. A set A is called preclosed if its complement is preopen or equivalently if $\text{Cl}(\text{Int}(A)) \subseteq A$. The term, preopen, was used for the first time by Mashhour et al. [21], while the concept of a, locally dense, set was introduced by Corson and Michael [4].

The concept of a semi-open set in a topological space was introduced by Levine in 1963 [18]. A subset A of a topological space (X, τ) is called semi-open [10] if...
$A \subseteq \text{Cl(Int}(A))$. A set A is called semi-closed if its complement is semi-open or equivalently if $\text{Int(Cl}(A)) \subseteq A$.

Recall that a subset A of a topological space (X, τ) is called α-open if A is the difference of an open and a nowhere dense subset of X. A set A is called α-closed if its complement is α-open or equivalently if A is union of a closed and a nowhere dense set.

We have a set is α-open if and only if it is semi-open and preopen.

A generalized class of closed sets was considered by Maki in [20]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [20].

Recall that a real-valued function f defined on a topological space X is called A-continuous [25] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [5, 11]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

Dontchev in [6] introduced a new class of mappings called contra-continuity. Jafari and Noiri in [12, 13] exhibited and studied among others a new weaker form of this class of mappings called contra-α-continuous. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 9, 10, 23].

Hence, a real-valued function f defined on a topological space X is called contra-α-continuous (resp. contra-semi-continuous, contra-precontinuous) if the preimage of every open subset of \mathbb{R} is α-closed (resp. semi-closed, preclosed) in X [6].

Results of Katětov [14, 15] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient conditions for the insertion of a contra-α-continuous function between two comparable real-valued functions.

If g and f are real-valued functions defined on a space X, we write $g \leq f$ (resp. $g < f$) in case $g(x) \leq f(x)$ (resp. $g(x) < f(x)$) for all x in X.

The following definitions are modifications of conditions considered in [16].
A property P defined relative to a real-valued function on a topological space is a $c\alpha$-property provided that any constant function has property P and provided that the sum of a function with property P and any contra-α-continuous function also has property P. If P_1 and P_2 are $c\alpha$-property, the following terminology is used: (i) A space X has the weak $c\alpha$-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f$, g has property P_1 and f has property P_2, then there exists a contra-α-continuous function h such that $g \leq h \leq f$. (ii) A space X has the strong $c\alpha$-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f$, g has property P_1 and f has property P_2, then there exists a contra-α-continuous function h such that $g \leq h \leq f$ and if $g(x) < f(x)$ for any x in X, then $g(x) < h(x) < f(x)$.

In this paper, for a topological space whose α-kernel of sets are α-open, is given a sufficient condition for the weak $c\alpha$-insertion property. Also for a space with the weak $c\alpha$-insertion property, we give necessary and sufficient conditions for the space to have the strong $c\alpha$-insertion property. Several insertion theorems are obtained as corollaries of these results.

2. The Main Result

Before giving a sufficient condition for insertability of a contra-α-continuous function, the necessary definitions and terminology are stated.

The abbreviations $c\alpha c$, cpc and csc are used for contra-α-continuous, contra-precontinuous and contra-semi-continuous, respectively.

Let (X, τ) be a topological space. Then the family of all α-open, α-closed, semi-open, semi-closed, preopen and preclosed will be denoted by $\alpha O(X, \tau)$, $\alpha C(X, \tau)$, $sO(X, \tau)$, $sC(X, \tau)$, $pO(X, \tau)$ and $pC(X, \tau)$, respectively.

Definition 2.1. Let A be a subset of a topological space (X, τ). We define the subsets A^Λ and A^V as follows:

$A^\Lambda = \cap\{O : O \supseteq A, O \in (X, \tau)\}$ and $A^V = \cup\{F : F \subseteq A, F^c \in (X, \tau)\}$.

In [7, 19, 22], A^Λ is called the kernel of A.

We define the subsets $\alpha(A^\Lambda)$, $\alpha(A^V)$, $p(A^\Lambda)$, $p(A^V)$, $s(A^\Lambda)$ and $s(A^V)$ as follows:

\[
\alpha(A^\Lambda) = \bigcap\{O : O \supseteq A, O \in \alpha O(X, \tau)\},
\]

\[
\alpha(A^V) = \bigcup\{F : F \subseteq A, F \in \alpha C(X, \tau)\},
\]

\[
p(A^\Lambda) = \bigcap\{O : O \supseteq A, O \in p O(X, \tau)\},
\]

\[
p(A^V) = \bigcup\{F : F \subseteq A, F \in p C(X, \tau)\},
\]

\[
s(A^\Lambda) = \bigcap\{O : O \supseteq A, O \in s O(X, \tau)\},
\]

\[
s(A^V) = \bigcup\{F : F \subseteq A, F \in s C(X, \tau)\}.
\]

$\alpha(A^\Lambda)$ (resp. $p(A^\Lambda)$, $s(A^\Lambda)$) is called the α-kernel (resp. prekernel, semi-kernel) of A.

The following first two definitions are modifications of conditions considered in [14, 15].

Definition 2.2. If ρ is a binary relation in a set S, then $\bar{\rho}$ is defined as follows:

$x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set $P(X)$ of a topological space X is called a strong binary relation in $P(X)$ in case ρ satisfies each of the following conditions:

1. If $A_i \rho B_j$ for any $i \in \{1, \ldots, m\}$ and for any $j \in \{1, \ldots, n\}$, then there exists a set C in $P(X)$ such that $A_i \rho C$ and $C \rho B_j$ for any $i \in \{1, \ldots, m\}$ and any $j \in \{1, \ldots, n\}$.

2. If $A \subseteq B$, then $A \bar{\rho} B$.

3. If $A \rho B$, then $\alpha(A^\Lambda) \subseteq B$ and $A \subseteq \alpha(B^V)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq A(f, \ell) \subseteq \{x \in X : f(x) \leq \ell\}$ for a real number ℓ, then $A(f, \ell)$ is called a lower indefinite cut set in the domain of f at the level ℓ.

http://www.earthlinepublishers.com
We now give the following main result:

Theorem 2.1. Let \(g \) and \(f \) be real-valued functions on the topological space \(X \), in which \(\alpha \)-kernel sets are \(\alpha \)-open, with \(g \leq f \). If there exists a strong binary relation \(\rho \) on the power set of \(X \) and if there exist lower indefinite cut sets \(A(f, t) \) and \(A(g, t) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_1 < t_2 \), then \(A(f, t_1) \rho A(g, t_2) \), then there exists a contra-\(\alpha \)-continuous function \(h \) defined on \(X \) such that \(g \leq h \leq f \).

Proof. Let \(g \) and \(f \) be real-valued functions defined on the \(X \) such that \(g \leq f \). By hypothesis there exists a strong binary relation \(\rho \) on the power set of \(X \) and there exist lower indefinite cut sets \(A(f, t) \) and \(A(g, t) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_1 < t_2 \), then \(A(f, t_1) \rho A(g, t_2) \).

Define functions \(F \) and \(G \) mapping the rational numbers \(\mathbb{Q} \) into the power set of \(X \) by \(F(t) = A(f, t) \) and \(G(t) = A(g, t) \). If \(t_1 \) and \(t_2 \) are any elements of \(\mathbb{Q} \) with \(t_1 < t_2 \), then \(F(t_1) \rho F(t_2), G(t_1) \rho G(t_2) \), and \(F(t_1) \rho G(t_2) \). By Lemmas 1 and 2 of [15] it follows that there exists a function \(H \) mapping \(\mathbb{Q} \) into the power set of \(X \) such that if \(t_1 \) and \(t_2 \) are any rational numbers with \(t_1 < t_2 \), then \(F(t_1) \rho H(t_1), H(t_1) \rho H(t_2) \) and \(H(t_1) \rho G(t_2) \).

For any \(x \) in \(X \), let \(h(x) = \inf \{ t \in \mathbb{Q} : x \in H(t) \} \).

We first verify that \(g \leq h \leq f \): If \(x \) is in \(H(t) \), then \(x \) is in \(G(t') \) for any \(t' > t \); since \(x \) is in \(G(t') = A(g, t') \) implies that \(g(x) \leq t' \), it follows that \(g(x) \leq t \). Hence \(g \leq h \). If \(x \) is not in \(H(t) \), then \(x \) is not in \(F(t') \) for any \(t' < t \); since \(x \) is not in \(F(t') = A(f, t') \) implies that \(f(x) > t' \), it follows that \(f(x) \geq t \). Hence \(h \leq f \).

Also, for any rational numbers \(t_1 \) and \(t_2 \) with \(t_1 < t_2 \), we have \(h^{-1}(t_1, t_2) = \alpha(H(t_2)^\mathbb{V} \setminus \alpha(H(t_1)) \setminus) \). Hence \(h^{-1}(t_1, t_2) \) is \(\alpha \)-closed in \(X \), i.e., \(h \) is a contra-\(\alpha \)-continuous function on \(X \).

The above proof used the technique of Theorem 1 in [14].

If a space has the strong \(c\alpha \)-insertion property for \((P_1, P_2) \), then it has the weak
$c\alpha$-insertion property for (P_1, P_2). The following result uses lower cut sets and gives a necessary and sufficient condition for a space satisfies that weak $c\alpha$-insertion property to satisfy the strong $c\alpha$-insertion property.

Theorem 2.2. Let P_1 and P_2 be $c\alpha$-property and X be a space that satisfies the weak $c\alpha$-insertion property for (P_1, P_2). Also assume that g and f are functions on X such that $g \leq f$, g has property P_1 and f has property P_2. The space X has the strong $c\alpha$-insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f - g, 2^{-n})$ and there exists a sequence \(\{F_n\} \) of subsets of X such that (i) for each n, F_n and $A(f - g, 2^{-n})$ are completely separated by contra-α-continuous functions, and (ii) \(\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n \).

Proof. Suppose that there is a sequence \((A(f - g, 2^{-n})) \) of lower cut sets for $f - g$ and suppose that there is a sequence \((F_n) \) of subsets of X such that

\[
\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n
\]

and such that for each n, there exists a contra-α-continuous function k_n on X into \([0, 2^{-n}]\) with $k_n = 2^{-n}$ on F_n and $k_n = 0$ on $A(f - g, 2^{-n})$. The function k from X into \([0, 1/4]\) which is defined by

\[
k(x) = \frac{1}{4} \sum_{n=1}^{\infty} k_n(x)
\]

is a contra-α-continuous function by the Cauchy condition and the properties of contra-α-continuous functions, (1) $k^{-1}(0) = \{x \in X : (f - g)(x) = 0\}$ and (2) if $(f - g)(x) > 0$, then $k(x) < (f - g)(x)$: In order to verify (1), observe that if $(f - g)(x) = 0$, then $x \in A(f - g, 2^{-n})$ for each n and hence $k_n(x) = 0$ for each n. Thus $k(x) = 0$. Conversely, if $(f - g)(x) > 0$, then there exists an n such that $x \in F_n$ and hence $k_n(x) = 2^{-n}$. Thus $k(x) \neq 0$ and this verifies (1). Next, in order to establish (2), note that
Strong Insertion of a Contra-\(\alpha\)-continuous Function …

\[
\{x \in X : (f - g)(x) = 0\} = \bigcap_{n=1}^{\infty} A(f - g, 2^{-n})
\]

and that \((A(f - g, 2^{-n}))\) is a decreasing sequence. Thus if \((f - g)(x) > 0\), then either \(x \notin A(f - g, 1/2)\) or there exists a smallest \(n\) such that \(x \notin A(f - g, 2^{-n})\) and \(x \in A(f - g, 2^{-j})\) for \(j = 1, \ldots, n - 1\).

In the former case,

\[
k(x) = \frac{1}{4} \sum_{n=1}^{\infty} k_n(x) \leq \frac{1}{4} \sum_{n=1}^{\infty} 2^{-n} < \frac{1}{2} \leq (f - g)(x),
\]

and in the latter,

\[
k(x) = \frac{1}{4} \sum_{j=n}^{\infty} k_j(x) \leq \frac{1}{4} \sum_{j=n}^{\infty} 2^{-j} < 2^{-n} \leq (f - g)(x).
\]

Thus \(0 \leq k \leq f - g\) and if \((f - g)(x) > 0\), then \((f - g)(x) > k(x) > 0\). Let \(g_1 = g + (1/4)k\) and \(f_1 = f - (1/4)k\). Then \(g \leq g_1 \leq f_1 \leq f\) and if \(g(x) < f(x)\), then

\[
g(x) < g_1(x) < f_1(x) < f(x).
\]

Since \(P_1\) and \(P_2\) are \(c\alpha\)-properties, \(g_1\) has property \(P_1\) and \(f_1\) has property \(P_2\). Since by hypothesis \(X\) has the weak \(c\alpha\)-insertion property for \((P_1, P_2)\), there exists a contra-\(\alpha\)-continuous function \(h\) such that \(g_1 \leq h \leq f_1\). Thus \(g \leq h \leq f\) and if \(g(x) < f(x)\), then \(g(x) < h(x) < f(x)\). Therefore \(X\) has the strong \(c\alpha\)-insertion property for \((P_1, P_2)\). (The technique of this proof is by Lane [16].)

Conversely, assume that \(X\) satisfies the strong \(c\alpha\)-insertion for \((P_1, P_2)\). Let \(g\) and \(f\) be functions on \(X\) satisfying \(P_1\) and \(P_2\), respectively such that \(g \leq f\). Thus, there exists a contra-\(\alpha\)-continuous function \(h\) such that \(g \leq h \leq f\) and such that if \(g(x) < f(x)\) for any \(x\) in \(X\), then \(g(x) < h(x) < f(x)\). We follow an idea contained in Powderly [24]. Now consider the functions \(0\) and \(f - h\). \(0\) satisfies property \(P_1\) and \(f - h\) satisfies

Thus, there exists a contra-\(\alpha\)-continuous function \(h_1\) such that \(0 \leq h_1 \leq f - h\) and if \(0 < (f - h)(x)\) for any \(x\) in \(X\), then \(0 < h_1(x) < (f - h)(x)\). We next show that

\[
\{x \in X : (f - g)(x) > 0\} = \{x \in X : h_1(x) > 0\}.
\]

If \(x\) is such that \((f - g)(x) > 0\), then \(g(x) < f(x)\). Therefore, \(g(x) < h(x) < f(x)\). Thus, \(f(x) - h(x) > 0\) or \((f - h)(x) > 0\). Hence, \(h_1(x) > 0\). On the other hand, if \(h_1(x) > 0\), then since \((f - h) \geq h_1\) and \(f - g \geq f - h\), therefore \((f - g)(x) > 0\). For each \(n\), let \(A(f - g, 2^{-n}) = \{x \in X : (f - g)(x) \leq 2^{-n}\}\), and

\[
F_n = \{x \in X : h_1(x) \geq 2^{-n+1}\}
\]

and

\[
k_n = \sup\{\inf\{h_1, 2^{-n+1}\}, 2^{-n}\} - 2^{-n}.
\]

Since \(\{x \in X : (f - g)(x) > 0\} = \{x \in X : h_1(x) > 0\}\), it follows that

\[
\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n.
\]

We next show that \(k_n\) is a contra-\(\alpha\)-continuous function which completely separates \(F_n\) and \(A(f - g, 2^{-n})\). From its definition and by the properties of contra-\(\alpha\)-continuous functions, it is clear that \(k_n\) is a contra-\(\alpha\)-continuous function. Let \(x \in F_n\). Then, from the definition of \(k_n\), \(k_n(x) = 2^{-n}\). If \(x \in A(f - g, 2^{-n})\), then since \(h_1 \leq f - h \leq f - g\), \(h_1(x) \leq 2^{-n}\). Thus, \(k_n(x) = 0\), according to the definition of \(k_n\). Hence \(k_n\) completely separates \(F_n\) and \(A(f - g, 2^{-n})\).

Theorem 2.3. Let \(P_1\) and \(P_2\) be \(c\alpha\)-properties and assume that the space \(X\) satisfied the weak \(c\alpha\)-insertion property for \((P_1, P_2)\). The space \(X\) satisfies the strong \(c\alpha\)-insertion property for \((P_1, P_2)\) if and only if \(X\) satisfies the strong \(c\alpha\)-insertion property for \((P_1, c\alpha c)\) and for \((c\alpha c, P_2)\).

Proof. Assume that \(X\) satisfies the strong \(c\alpha\)-insertion property for \((P_1, c\alpha c)\) and for
(cαc, P₂). If g and f are functions on X such that , then since X satisfies the weak cα-insertion property for (P₁, P₂) there is a contra-α-continuous function k such that . Also, by hypothesis there exist contra-α-continuous functions h₁ and h₂ such that and if , then and such that and if , then . If a function h is defined by , then h is a contra-α-continuous function, and if , then . Hence X satisfies the strong cα-insertion property for (P₁, P₂).

The converse is obvious since any contra-α-continuous function must satisfy both properties P₁ and P₂. (The technique of this proof is by Lane [17].)

3. Applications

Before stating the consequences of Theorems 2.1, 2.2 and 2.3 we suppose that X is a topological space whose α-kernel sets are α-open.

Corollary 3.1. If for each pair of disjoint preopen (resp. semi-open) sets , of X, there exist α-closed sets F₁ and F₂ of X such that , and , then X has the weak cα-insertion property for (cpc, cpc) (resp. (csc, csc)).

Proof. Let g and f be real-valued functions defined on X, such that f and g are cpc (resp. csc), and g ≤ f. If a binary relation ρ is defined by Ap B in case , then by hypothesis ρ is a strong binary relation in the power set of X. If and are any elements of Q with , then

since , is a preopen (resp. semi-open) set and since , is a preclosed (resp. semi-closed) set, it follows that , (resp.). Hence t₁ < t₂ implies that \(A(f, t₁) \rho A(g, t₂) \). The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint preopen (resp. semi-open) sets \(G_1, G_2 \), there exist \(\alpha \)-closed sets \(F_1 \) and \(F_2 \) such that \(G_1 \subseteq F_1, G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \), then every contra-precontinuous (resp. contra-semi-continuous) function is contra-\(\alpha \)-continuous.

Proof. Let \(f \) be a real-valued contra-precontinuous (resp. contra-semi-continuous) function defined on \(X \). Set \(g = f \), then by Corollary 3.1, there exists a contra-\(\alpha \)-continuous function \(h \) such that \(g = h = f \).

Corollary 3.3. If for each pair of disjoint preopen (resp. semi-open) sets \(G_1, G_2 \) of \(X \), there exist \(\alpha \)-closed sets \(F_1 \) and \(F_2 \) of \(X \) such that \(G_1 \subseteq F_1, G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \), then \(X \) has the strong \(c\alpha \)-insertion property for \((cpc, cpc)\) (resp. \((csc, csc)\)).

Proof. Let \(g \) and \(f \) be real-valued functions defined on \(X \), such that \(f \) and \(g \) are \(cpc \) (resp. \(csc \)), and \(g \leq f \). Set \(h = (f + g)/2 \), thus \(g \leq h \leq f \) and if \(g(x) < f(x) \) for any \(x \) in \(X \), then \(g(x) < h(x) < f(x) \). Also, by Corollary 3.2, since \(g \) and \(f \) are contra-\(\alpha \)-continuous functions hence \(h \) is a contra-\(\alpha \)-continuous function.

Corollary 3.4. If for each pair of disjoint subsets \(G_1, G_2 \) of \(X \), such that \(G_1 \) is preopen and \(G_2 \) is semi-open, there exist \(\alpha \)-closed subsets \(F_1 \) and \(F_2 \) of \(X \) such that \(G_1 \subseteq F_1, G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \), then \(X \) have the weak \(c\alpha \)-insertion property for \((cpc, cpc)\) and \((csc, csc)\).

Proof. Let \(g \) and \(f \) be real-valued functions defined on \(X \), such that \(g \) is \(cpc \) (resp. \(csc \)) and \(f \) is \(csc \) (resp. \(cpc \)), with \(g \leq f \). If a binary relation \(\rho \) is defined by \(A \rho B \) in case \(s(A^\Lambda) \subseteq p(B^\Lambda) \) (resp. \(p(A^\Lambda) \subseteq s(B^\Lambda) \)), then by hypothesis \(\rho \) is a strong binary relation in the power set of \(X \). If \(t_1 \) and \(t_2 \) are any elements of \(\mathbb{Q} \) with \(t_1 < t_2 \), then

\[
A(f, t_1) \subseteq \{x \in X : f(x) \leq t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);
\]

since \(\{x \in X : f(x) \leq t_1\} \) is a semi-open (resp. preopen) set and since \(\{x \in X : g(x) < t_2\} \) is a preclosed (resp. semi-closed) set, it follows that \(s(A(f, t_1)^\Lambda) \subseteq p(A(g, t_2)^\Lambda) \).
Strong Insertion of a Contra-α-continuous Function … 233

Hence, \(t_1 < t_2 \) implies that \(A(f, t_1) \supseteq A(g, t_2) \).

The proof follows from Theorem 2.1. \(\square \)

Before stating consequences of Theorems 2.2 and 2.3 we state and prove the necessary lemmas.

Lemma 3.1. The following conditions on the space \(X \) are equivalent:

(i) For each pair of disjoint subsets \(G_1, G_2 \) of \(X \), such that \(G_1 \) is preopen and \(G_2 \) is semi-open, there exist \(\alpha \)-closed subsets \(F_1, F_2 \) of \(X \) such that \(G_1 \subseteq F_1, G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \).

(ii) If \(G \) is a semi-open (resp. preopen) subset of \(X \) which is contained in a preclosed (resp. semi-closed) subset \(F \) of \(X \), then there exists an \(\alpha \)-closed subset \(H \) of \(X \) such that \(G \subseteq H \subseteq \alpha(H^\alpha) \subseteq F \).

Proof. (i) \(\Rightarrow \) (ii) Suppose that \(G \subseteq F \), where \(G \) and \(F \) are semi-open (resp. preopen) and preclosed (resp. semi-closed) subsets of \(X \), respectively. Hence, \(F^c \) is a preopen (resp. semi-open) and \(G \cap F^c = \emptyset \).

By (i) there exists two disjoint \(\alpha \)-closed subsets \(F_1, F_2 \) such that \(G \subseteq F_1 \) and \(F^c \subseteq F_2 \). But

\[F^c \subseteq F_2 \Rightarrow F_1^c \subseteq F, \]

and

\[F_1 \cap F_2 = \emptyset \Rightarrow F_1 \subseteq F_2^c \]

hence

\[G \subseteq F_1 \subseteq F_2^c \subseteq F \]

and since \(F_2^c \) is an \(\alpha \)-open subset containing \(F_1 \), we conclude that \(\alpha(F_1^\alpha) \subseteq F_2^c \), i.e.,

\[G \subseteq F_1 \subseteq \alpha(F_1^\alpha) \subseteq F. \]

By setting \(H = F_1 \), condition (ii) holds.

(ii) \(\Rightarrow \) (i) Suppose that \(G_1, G_2 \) are two disjoint subsets of \(X \), such that \(G_1 \) is preopen and \(G_2 \) is semi-open.
This implies that \(G_2 \subseteq G_1^c \) and \(G_1^c \) is a preclosed subset of \(X \). Hence by (ii) there exists an \(\alpha \)-closed set \(H \) such that \(G_2 \subseteq H \subseteq \alpha(H^\Lambda) \subseteq G_1^c \).

But

\[
H \subseteq \alpha(H^\Lambda) \Rightarrow H \cap \alpha((H^\Lambda)^c) = \emptyset
\]

and

\[
\alpha(H^\Lambda) \subseteq G_1^c \Rightarrow G_1 \subseteq \alpha((H^\Lambda)^c).
\]

Furthermore, \(\alpha((H^\Lambda)^c) \) is an \(\alpha \)-closed subset of \(X \). Hence \(G_2 \subseteq H, G_1 \subseteq \alpha((H^\Lambda)^c) \) and \(H \cap \alpha((H^\Lambda)^c) = \emptyset \). This means that condition (i) holds.

Lemma 3.2. Suppose that \(X \) is a topological space. If each pair of disjoint subsets \(G_1, G_2 \) of \(X \), where \(G_1 \) is preopen and \(G_2 \) is semi-open, can be separated by \(\alpha \)-closed subsets of \(X \), then there exists a contra-\(\alpha \)-continuous function \(h : X \to [0, 1] \) such that \(h(G_2) = \{0\} \) and \(h(G_1) = \{1\} \).

Proof. Suppose \(G_1 \) and \(G_2 \) are two disjoint subsets of \(X \), where \(G_1 \) is preopen and \(G_2 \) is semi-open. Since \(G_1 \cap G_2 = \emptyset \), hence \(G_2 \subseteq G_1^c \). In particular, since \(G_1^c \) is a preclosed subset of \(X \) containing the semi-open subset \(G_2 \) of \(X \), by Lemma 3.1, there exists an \(\alpha \)-closed subset \(H_{1/2} \) such that

\[
G_2 \subseteq H_{1/2} \subseteq \alpha(H_{1/2}^\Lambda) \subseteq G_1^c.
\]

Note that \(H_{1/2} \) is also a preclosed subset of \(X \) and contains \(G_2 \), and \(G_1^c \) is a preclosed subset of \(X \) and contains the semi-open subset \(\alpha(H_{1/2}^\Lambda) \) of \(X \). Hence, by Lemma 3.1, there exists \(\alpha \)-closed subsets \(H_{1/4} \) and \(H_{3/4} \) such that

\[
G_2 \subseteq H_{1/4} \subseteq \alpha(H_{1/4}^\Lambda) \subseteq H_{1/2} \subseteq \alpha(H_{1/2}^\Lambda) \subseteq H_{3/4} \subseteq \alpha(H_{3/4}^\Lambda) \subseteq G_1^c.
\]

By continuing this method for every \(t \in D \), where \(D \subseteq [0, 1] \) is the set of rational numbers that their denominators are exponents of 2, we obtain \(\alpha \)-closed subsets \(H_t \) with the property that if \(t_1, t_2 \in D \) and \(t_1 < t_2 \), then \(H_{t_1} \subseteq H_{t_2} \). We define the function \(h \) on \(X \) by \(h(x) = \inf \{t : x \in H_t \} \) for \(x \notin G_1 \) and \(h(x) = 1 \) for \(x \in G_1 \).
Strong Insertion of a Contra-\(\alpha\)-continuous Function …

Note that for every \(x \in X\), \(0 \leq h(x) \leq 1\), i.e., \(h\) maps \(X\) into \([0, 1]\). Also, we note that for any \(t \in D\), \(G_2 \subseteq H_t\); hence \(h(G_2) = \{0\}\). Furthermore, by definition, \(h(G_1) = \{1\}\). It remains only to prove that \(h\) is a contra-\(\alpha\)-continuous function on \(X\). For every \(\alpha \in \mathbb{R}\), we have if \(\alpha \leq 0\), then \(\{x \in X : h(x) < \alpha\} = \emptyset\) and if \(0 < \alpha\), then \(\{x \in X : h(x) < \alpha\} = \bigcup[H_t : t < \alpha]\). hence, they are \(\alpha\)-closed subsets of \(X\). Similarly, if \(\alpha < 0\), then \(\{x \in X : h(x) > \alpha\} = X\) and if \(0 \leq \alpha\), then \(\{x \in X : h(x) > \alpha\} = \bigcup \{\alpha(H_i^\alpha)^c : t > \alpha\}\) hence, every of them is an \(\alpha\)-closed subset. Consequently \(h\) is a contra-\(\alpha\)-continuous function.

Lemma 3.3. Suppose that \(X\) is a topological space. If each pair of disjoint subsets \(G_1, G_2\) of \(X\), where \(G_1\) is preopen and \(G_2\) is semi-open, can separate by \(\alpha\)-closed subsets of \(X\), and \(G_1\) (resp. \(G_2\)) is an \(\alpha\)-closed subsets of \(X\), then there exists a contra-continuous function \(h : X \to [0, 1]\) such that, \(h^{-1}(0) = G_1\) (resp. \(h^{-1}(0) = G_2\)) and \(h(G_2) = \{1\}\) (resp. \(h(G_1) = \{1\}\)).

Proof. Suppose that \(G_1\) (resp. \(G_2\)) is an \(\alpha\)-closed subset of \(X\). By Lemma 3.2, there exists a contra-\(\alpha\)-continuous function \(h : X \to [0, 1]\) such that, \(h(G_1) = \{0\}\) (resp. \(h(G_2) = \{0\}\)) and \(h(X \setminus G_1) = \{1\}\) (resp. \(h(X \setminus G_2) = \{1\}\)). Hence, \(h^{-1}(0) = G_1\) (resp. \(h^{-1}(0) = G_2\)) and since \(G_2 \subseteq X \setminus G_1\) (resp. \(G_1 \subseteq X \setminus G_2\)), therefore \(h(G_2) = \{1\}\) (resp. \(h(G_1) = \{1\}\)).

Lemma 3.4. Suppose that \(X\) is a topological space such that every two disjoint semi-open and preopen subsets of \(X\) can be separated by \(\alpha\)-closed subsets of \(X\). The following conditions are equivalent:

(i) For every two disjoint subsets \(G_1\) and \(G_2\) of \(X\), where \(G_1\) is preopen and \(G_2\) is semi-open, there exists a contra-\(\alpha\)-continuous function \(h : X \to [0, 1]\) such that, \(h^{-1}(0) = G_1\) (resp. \(h^{-1}(0) = G_2\)) and \(h^{-1}(1) = G_2\) (resp. \(h^{-1}(1) = G_1\)).

(ii) Every preopen (resp. semi-open) subset of \(X\) is an \(\alpha\)-closed subsets of \(X\).

(iii) Every preclosed (resp. semi-closed) subset of \(X\) is an \(\alpha\)-open subsets of \(X\).
Proof. (i) \(\Rightarrow\) (ii) Suppose that \(G\) is a preopen (resp. semi-open) subset of \(X\). Since \(\emptyset\) is a semi-open (resp. preopen) subset of \(X\), by (i) there exists a contra-\(\alpha\)-continuous function \(h : X \to [0, 1]\) such that, \(h^{-1}(0) = G\). Set \(F_n = \{x \in X : h(x) < \frac{1}{n}\}\). Then for every \(n \in \mathbb{N}\), \(F_n\) is an \(\alpha\)-closed subset of \(X\) and \(\bigcap_{n=1}^{\infty} F_n = \{x \in X : h(x) = 0\} = G\).

(ii) \(\Rightarrow\) (i) Suppose that \(G_1\) and \(G_2\) are two disjoint subsets of \(X\), where \(G_1\) is preopen and \(G_2\) is semi-open. By Lemma 3.3, there exists a contra-\(\alpha\)-continuous function \(f : X \to [0, 1]\) such that, \(f^{-1}(0) = G_1\) and \(f(G_2) = \{1\}\). Set \(G = \{x \in X : f(x) < \frac{1}{2}\}\), \(F = \{x \in X : f(x) = \frac{1}{2}\}\), and \(H = \{x \in X : f(x) > \frac{1}{2}\}\). Then \(G \cup F\) and \(H \cup F\) are two \(\alpha\)-open subsets of \(X\) and \((G \cup F) \cap G_2 = \emptyset\). By Lemma 3.3, there exists a contra-\(\alpha\)-continuous function \(g : X \to \left[\frac{1}{2}, 1\right]\) such that, \(g^{-1}(1) = G_2\) and \(g(G \cup F) = \left\{\frac{1}{2}\right\}\). Define \(h\) by \(h(x) = f(x)\) for \(x \in G \cup F\), and \(h(x) = g(x)\) for \(x \in H \cup F\). Then \(h\) is well-defined and a contra-\(\alpha\)-continuous function, since \((G \cup F) \cap (H \cup F) = F\) and for every \(x \in F\) we have \(f(x) = g(x) = \frac{1}{2}\). Furthermore, \((G \cup F) \cup (H \cup F) = X\), hence \(h\) defined on \(X\) and maps to \([0, 1]\). Also, we have \(h^{-1}(0) = G_1\) and \(h^{-1}(1) = G_2\).

(ii) \(\Leftrightarrow\) (iii) By De Morgan law and noting that the complement of every \(\alpha\)-open subset of \(X\) is an \(\alpha\)-closed subset of \(X\) and complement of every \(\alpha\)-closed subset of \(X\) is an \(\alpha\)-open subset of \(X\), the equivalence is hold.

Corollary 3.5. If for every two disjoint subsets \(G_1\) and \(G_2\) of \(X\), where \(G_1\) is preopen (resp. semi-open) and \(G_2\) is semi-open (resp. preopen), there exists a contra-\(\alpha\)-continuous function \(h : X \to [0, 1]\) such that, \(h^{-1}(0) = G_1\) and \(h^{-1}(1) = G_2\), then \(X\) has the strong \(c\alpha\)-insertion property for \((cpc, csc)\) (resp. \((csc, cpc)\)).

Proof. Since for every two disjoint subsets \(G_1\) and \(G_2\) of \(X\), where \(G_1\) is preopen (resp. semi-open) and \(G_2\) is semi-open (resp. preopen), there exists a contra-\(\alpha\)-
Strong Insertion of a Contra-α-continuous Function …

continuous function $h : X \to [0, 1]$ such that, $h^{-1}(0) = G_1$ and $h^{-1}(1) = G_2$, define $F_1 = \left\{ x \in X : h(x) < \frac{1}{2} \right\}$ and $F_2 = \left\{ x \in X : h(x) > \frac{1}{2} \right\}$. Then F_1 and F_2 are two disjoint α-closed subsets of X that contain G_1 and G_2, respectively. Hence, by Corollary 3.4, X has the weak $c\alpha$-insertion property for (cpc, csc) and (csc, cpc). Now, assume that g and f are functions on X such that $g \leq f$, g is cpc (resp. csc) and f is cac. Since $f - g$ is cpc (resp. csc), therefore the lower cut set $A(f - g, 2^{-n}) = \{ x \in X : (f - g)(x) \leq 2^{-n} \}$ is a preopen (resp. semi-open) subset of X. Now setting $H_n = \{ x \in X : (f - g)(x) > 2^{-n} \}$ for every $n \in \mathbb{N}$, then by Lemma 3.4, H_n is an α-open subset of X and we have $\{ x \in X : (f - g)(x) > 0 \} = \bigcup_{n=1}^{\infty} H_n$ and for every $n \in \mathbb{N}$, H_n and $A(f - g, 2^{-n})$ are disjoint subsets of X. By Lemma 3.2, H_n and $A(f - g, 2^{-n})$ can be completely separated by contra-α-continuous functions. Hence by Theorem 2.2, X has the strong $c\alpha$-insertion property for (cpc, cac) (resp. $(csc, c\alpha c)$).

By an analogous argument, we can prove that X has the strong $c\alpha$-insertion property for (cac, csc) (resp. $(c\alpha c, cpc)$). Hence, by Theorem 2.3, X has the strong $c\alpha$-insertion property for (cpc, csc) (resp. (csc, cpc)).

References

